

Code4SP
E-book

WP3:

Code4SP Training

Materials

Prepared by:

2 | Page

Project Information

Project Acronym: Code4SP

Project Title: Coding for Social Promotion

Project Reference: 621417-EPP-1-2020-1-PT-EPPKA3-IPI-SOC-IN

Project website: www.code4sp.eu

Authoring Partner: CodeDoor, CEPROF, SHA and CIP

Document Version: 2

Date of Preparation: 15/04/2022

Document History

Date Version Author Description

04/04/2022 1 Various Authors Draft

15/04/2022 2 Various Authors Final Version

http://www.code4sp.eu/

3 | Page

Introduction

This e-book is part of the Code4SP KA3, reference number 621417-EPP-1-2020-1-PT-

EPPKA3-IPI-SOC-IN, co-funded by the Erasmus+ Programme, KA3 – Policy Reform,

of the European Commission.

The project is coordinated by SPEL and the consortium is composed of seven more

partners (CEPROF, CIP – Citizens in Power, CSI - Center for Social Innovation Ltd.,

CODEDOOR. ORG EV, ZAUG, Action Sinergy SA and Social Hackers Academy), from

four countries (Cyprus, Greece, Germany and Portugal).

This project aims to:

• Generate socio-economic promotion, by providing job-market-oriented training

on computer programming.

• Transfer currently established good practices on non-formal education, on

computer programming, to the Southern European countries, that are,

simultaneously, deemed more economically vulnerable and subjected to an

unprecedented exposure to migratory waves, of people with low socio-economic

condition.

The e-book is drawn from the content of the implementation guide previously elaborated

in the scope of the project in order to compile the training materials for coaches/trainers,

so that they can implement Code4SP methodology in their countries. The training

materials are composed of lesson scenarios, PPTs, ready-made tutorials and any other

adjusted curriculum that will have emerged from the original CodeDoor methodology,

as well as from successful best practices of each national context.

4 | Page

Table of Contents

Introduction ... 3

Table of Contents ... 4

1. Computer Programming and its basic concepts .. 5

1.1. Introduction to computers and programming ... 8

1.2. Hardware and Software Concept .. 10

1.3 How computers store data ... 10

1.4. How a program works ... 13

1.5. Programs and Program Languages .. 16

2. HTML – HyperText Markup Language .. 19

2.1. The basics of HTML .. 22

2.2. HTML advanced concepts ... 69

2.3. HTML5 Features .. 83

2.4. HTML5 References .. 119

3. CSS – Cascading Style Sheets ... 120

3.1. CSS Intro .. 123

3.2. CSS Advanced .. 162

3.3. CSS Responsive Web Design ... 180

3.4. CSS Grid ... 190

3.5. CSS SASS .. 192

4. SQL - Structured Query Language .. 210

4.1. SQL Basics ... 213

4.2. SQL Databases ... 269

4.3. SQL References.. 300

4.4. SQL Examples .. 309

5. JavaScript .. 310

5.1. JavaScript Basic.. 314

5.2. JavaScript & DOM ... 388

5.3. JavaScript & BOM ... 417

5.4. JavaScript Advanced .. 437

5 | Page

1. Computer
Programming
and its basic
concepts

6 | Page

Topic Information

Topic:

1. Computer Programming and its basic concepts

Prerequisites:
Basic computer literacy, basic software installed, and basic knowledge of working with

files.

Workload:
5 hours.

Description:
In this topic, we give a brief introduction to computer programming and its basic

concepts. We handle hardware and software concepts as well as how computers tore

data. In the end we take a lot at how a program works and what type of programming

languages are out there.

Learning outcomes:
• Recognize the concept of HyperText Markup Language (HTML) in the family of

document description languages.

• Distinguish between the structure, content and styles of a page.

• Use HTML in the construction of pages for the web.

Material required:
• Computer or laptop

• Internet connection

Lesson Scenario:

The total time for this topic is 5 hours, and it will be up to the trainer/coach to decide how

much time to dedicate to teaching each subtopic. In order to make the most of all the

time available, we propose the use of the training materials produced by the project

7 | Page

(PPT presentations), which were designed with an effective use of time in mind. These

presentations are composed of the following elements:

● Development of the subtopic and main ideas to retain;

● Proposed Activities/Exercises.

That said, if the trainer/coach follows the logical sequence of the PPTs, he/she will

certainly be able to complete the session within the stipulated time limit. These

presentations can also be made available to learners for individual study.

Subtopics:

1.1. Introduction to computers and programming

1.2. Hardware and Software Concept

1.3. How computers store data

1.4. How a program works

1.5. Programs and Program Languages

Additional resources:

● Khan Academy: useful resources computer topics in various languages

● Marc Andreessen: https://future.a16z.com/software-is-eating-the-world/

https://en.khanacademy.org/computing/computers-and-internet
https://future.a16z.com/software-is-eating-the-world/
https://future.a16z.com/software-is-eating-the-world/
https://future.a16z.com/software-is-eating-the-world/

8 | Page

1.1. Introduction to computers and programming

Computers are machines that can be programmed to carry out a sequence of

instructions. Programming is the process of designing those instructions. Programs are

written in a particular language which provides a structure for the programmer and uses

specific instructions to control the sequence of operations that the computer carries out.

„Software is eating the world“ (Marc Andreessen, https://future.a16z.com/software-is-

eating-the-world/) so make your learners aware of the fact that nowadays nearly

everything is computerized and programmed (see also: Internet of Things).

What are some of the ways you use computers?

Let your learners do a brainstorming or create a mind map on how they are actually

using computers. There are many ways you can use computers in your everyday life.

Here are a few of the most common ways:

• To surf the internet

• To check your email

• To do research for a project

• To play games

• To watch movies or TV shows

• To listen to music

• To work on a document or spreadsheet

• To read the news

What other devices are computers?

Computers are not just the devices that sit on our desks or in our pockets. They are also

the devices that run our cars, planes, and boats. They are in our televisions,

refrigerators, and even our watches. In short, computers are everywhere.

https://future.a16z.com/author/marc-andreessen/
https://future.a16z.com/software-is-eating-the-world/
https://future.a16z.com/software-is-eating-the-world/
https://en.wikipedia.org/wiki/Internet_of_things

9 | Page

What software have you used?

Let your learners do a brainstorming or create a mind map on what software they have

already used. Try to make them aware that every Software was written by some

developers. Even the Software that resides on the smartphones, cash-dispensers or

even televisions they use everyday.

10 | Page

1.2. Hardware and Software Concept

Definition of hardware and software

Hardware refers to the physical components of a computer system, while software refers

to the instructions and data that make the computer work.

The main components of a computer and its functions

A computer has four main components: the central processing unit (CPU), the memory,

the input devices, and the output devices. The CPU is the part of the computer that

performs the calculations and controls the other parts. The memory is where the

computer stores the data it is working on. The input devices are the devices that the

user uses to enter data into the computer, such as the keyboard and the mouse. The

output devices are the devices that the computer uses to display the results of its

calculations, such as the monitor and the printer.

1.3 How computers store data

Concept: the binary system

A binary system is a way of representing information using two symbols: 0 and 1. Binary

is the simplest form of information representation and is used in computer systems to

store and process information. Binary is a convenient way to represent information

because it is very simple and can be processed by computer systems very easily.

Storing numbers, characters

ASCII

Computer systems store text and numbers in a variety of ways, each with its own

benefits and drawbacks. The most common way to store text is as ASCII (American

11 | Page

Standard Code for Information Interchange) characters. In ASCII, each character is

represented by a number, from 0 to 127. This number is called the character's ASCII

code. When a computer stores text as ASCII characters, it simply stores the ASCII

codes for each character in the text.

Unicode
Another way to store text is as Unicode characters. Unicode is an international standard

that defines a unique number for every character in every language. When a computer

stores text as Unicode characters, it stores the Unicode code for each character in the

text.

UTF-8
UTF-8 is a character encoding that can store text and numbers in a single Unicode

character. This encoding is widely used on the internet because it can encode all

characters in a variety of languages. UTF-8 is a variable-length encoding, which means

that it can encode characters of different sizes. The smallest encoding is 1 byte, and the

largest encoding is 4 bytes. This encoding is backwards compatible with ASCII, which

means that ASCII text will be encoded in UTF-8 using 1 byte.

Numbers
The most common way to store numbers is as binary integers. In binary, each number

is represented by a string of 0s and 1s. For example, the number 12 can be represented

as: 01001000 The number 12 can also be represented in hexadecimal, which is a base

16 numbering system. In hexadecimal, each number is represented by a string of

hexadecimal digits. For example, the number 12 can be represented as: C When a

computer stores a number in binary or hexadecimal, it stores the number's integer value.

Other types of data
Computers are often referred to as digital devices. The term digital can be used to

describe anything that uses binary numbers. Binary data is data that is stored in binary,

and a digital device is any device that works with binary data. In this section we have

discussed how numbers and characters are stored in binary, but computers also work

12 | Page

with many other types of digital data. For example, consider the pictures that you take

with your digital camera. These images are composed of tiny dots of color known as

pixels. (The term pixel stands for picture element.) Each pixel in an image is converted

to a numeric code that represents the pixel’s color. The numeric code is stored in

memory as a binary number.

The music that you play on your CD player, iPod or MP3 player is also digital. A digital

song is made up of small pieces of music called samples. Each sample is turned into a

binary number, which can be stored in a computer's memory. The more samples that a

song has, the more like the original music it will sound when it's played back. A CD

quality song has more than 44,000 samples per second!

13 | Page

1.4. How a program works

There are many different types of computer programs, but they all have the same basic

components: a user interface, a processor, and memory. The user interface allows the

user to input information and instructions into the program, the processor carries out the

instructions, and the memory stores the program and the data it processes. Most

computer programs are written in a high-level programming language, which is a

language that is designed to be easy for humans to read and write. However, the

processor can only understand machine code, which is a series of ones and zeroes. So,

before a program can be run, it must be converted into machine code. This is done by

a program called a compiler. The compiler reads the program and converts it into

machine code. It then stores the machine code in a file called an executable. When the

user runs the program, the executable is loaded into memory and the processor carries

out the instructions.

The fetch-decode-execute cycle

The fetch-decode-execute cycle is the basic process that a computer uses to carry out

instructions. The cycle begins when the computer fetches an instruction from memory.

It then decodes the instruction to determine what it is supposed to do. Finally, it executes

the instruction. The cycle then repeats, fetching the next instruction from memory.

From machine language to assembly language

As programming in machine language, which consist only of binary code is too

complicated for a human being, assembly language was created. Assembly language

is a low-level programming language for a computer, microprocessor, or other

programmable device, in which the programmer uses assembly language instructions

to control the operation of the device. Assembly language is specific to a certain

microprocessor or family of microprocessors. It consists of a series of mnemonic

codes, symbolic names for the operations that the microprocessor can perform, and

14 | Page

the operands (data) upon which these operations are to be performed. Assembly

language is converted into machine code, a form of binary code that is specific to a

particular type of computer and can be understood by the computer's processor.

Machine code is the only form of code that the processor can directly execute.

Even assembly language programming is easier than machine language programming

it was not handy enough to produce fast and easy to read source code. Therefore

high-level programming languages (such as C# or python) where created.

Today there are many high-level programming languages. Some of the more common

ones are Java, Python, and Ruby. High-level programming languages are easier to

use than low-level programming languages. They allow you to focus on the task at

hand, rather than on the details of the computer. This makes them ideal for creating

applications and programs. High-level programming languages also tend to be more

forgiving than low-level programming languages. If you make a mistake when writing

code in a high-level language, the compiler will usually be able to correct it for you.

This can save you a lot of time and frustration when coding.

Key Words, Operators, and Syntax: an overview

There are many high-level programming languages available today. Each has its own

unique set of keywords, operators, and syntax. In order to be effective with a high-level

programming language, it is important to be familiar with the specific keywords,

operators, and syntax used by that language. Some of the most common keywords used

in high-level programming languages include: if, then, else, while, for, do, break,

continue. These keywords are used to control the flow of program execution. Operators

are symbols that represent operations that can be performed on values. The most

common operators include: + (addition), - (subtraction), * (multiplication), / (division),

and % (modulus). These operators can be used to calculate the results of expressions.

The syntax of a programming language is the set of rules that govern how code must

be written in order to be interpreted by the compiler or interpreter. The syntax of a high-

15 | Page

level programming language is typically more forgiving than the syntax of a lower-level

language. This can make it easier for beginners to learn how to program.

Compilers and Interpreters

Computer compilers and interpreters are important tools for software developers. A

compiler takes code written in one language and converts it into code that can be run

on a different machine. An interpreter takes code written in one language and runs it as

it is, without compiling it first. Compilers are typically used for languages that have a lot

of structure, like C or Java. Interpreters are typically used for languages that are more

flexible, like Python or Ruby. Compilers usually produce faster code than interpreters.

However, interpreters are typically more portable, meaning they can run on more types

of machines. Which tool to use depends on the situation. If speed is important, a

compiler is a better choice. If portability is important, an interpreter is a better choice.

16 | Page

1.5. Programs and Program Languages

Programming languages are used to create programs, which are used to control the

behavior of a machine, typically a computer. A programming language provides a

structure for the programmer to give instructions to the machine, and a way to

communicate those instructions to other programmers. There are many programming

languages in use today. The most popular ones are C, Java, Python, and JavaScript.

Types of languages

There are dozens of programming languages in use today, but they can be broadly

classified into five categories:

• Low-level programming languages: These programming languages are very close

to the hardware and are used to program microprocessors and other low-level devices.

They are not easy to learn and are not popular for general-purpose programming.

Examples: Assembly language, C programming language, and Low-level assembly

language.

• High-level programming languages: These programming languages are designed

to be easy to learn and use. They are popular for general-purpose programming.

Examples: Java, C++, and Python.

• Scripting languages: Scripting languages are designed to be easy to use and are

popular for scripting purposes. Examples: Python, Ruby, and JavaScript.

• Domain-specific languages: Domain-specific languages are designed for a specific

task or industry. They are not easy to learn and are not popular for general-purpose

programming. Examples: MATLAB, SQL, and FORTRAN.

• Object-oriented programming languages: These programming languages are

based on the object-oriented programming paradigm. Examples: Java, C++, and

Python.

17 | Page

From a high-level program to an executable file

When a computer program is written in a high-level language, it is first translated into a

lower-level language, which is more easily understood by machines. The lower-level

language is then compiled into an executable file, which can be run on a computer.

IDEs (Integrated Development Environments)

An Integrated Development Environment (IDE) is a software application that provides

comprehensive facilities to computer programmers for software development. An IDE

typically consists of a source code editor, build automation tools, and a debugger. The

source code editor allows the programmer to write code, while the build automation tools

automate the process of compiling that code into a form the computer can run. The

debugger allows the programmer to step through the code, examining the state of the

program at each point in its execution. IDEs are often used in conjunction with a version

control system, which allows different programmers working on the same project to

share and merge their changes seamlessly.

The common elements in programming languages

Computer programming languages share a number of common elements, despite their

differences. All programming languages have a way of representing instructions to the

computer in a form that the computer can understand. This is usually called code, or

source code. Programmers use code to create software programs and applications. All

programming languages also have a way of organizing instructions so that they can be

reused, modified, or shared with other programmers. This is usually called a library or

module. Libraries and modules allow programmers to create complex programs by

building on the work of other programmers. Finally, all programming languages have a

way of conveying information to the user about what the program is doing and how it is

performing. This is usually called output or debug information. Output and debug

information helps programmers understand and fix problems with their programs.

18 | Page

Procedural and object-oriented programming

There are two main types of programming: procedural and object-oriented. Procedural

programming involves a step-by-step process, while object-oriented programming

involves creating objects that interact with one another. Procedural programming is

often seen as simpler than object-oriented programming. It is easy to learn the steps

required to complete a task, and it is easy to change the order of those steps without

affecting the outcome. However, procedural programming can be less efficient because

it can be difficult to reuse code that has been written for a specific task. Object-oriented

programming is more complex than procedural programming, but it allows for more

flexibility and reuse of code. Objects can be created for specific tasks and then reused

as needed. In addition, object-oriented code is often easier to read and understand than

procedural code. However, object-oriented programming can be more difficult to learn

and may be less efficient than procedural programming.

19 | Page

2. HTML –
HyperText
Markup
Language

20 | Page

Topic Information

Topic:

2. HTML

Prerequisites:
Basic computer literacy, basic software installed, and basic knowledge of working with

files.

Workload:
10 hours.

Description:
In this topic, we cover the basics of HTML, to get learners up to speed in the world of

programming, after having acquired some basic concepts. We define the elements,

attributes and all the other important terms they may have heard and where these terms

fit into the language. We also show how an HTML element is structured, how a typical

HTML page is structured and explain other important basic features of the language.

Learning outcomes:
● Recognize the concept of HyperText Markup Language (HTML) in the family of

document description languages.

● Distinguish between the structure, content and styles of a page.

● Use HTML in the construction of pages for the web.

Material required:
● Computer or laptop

● Internet connection

● Online website builder (https://sites.google.com/new)

● Online text editor (https://www.w3schools.com/html/default.asp)

https://sites.google.com/new
https://www.w3schools.com/html/default.asp

21 | Page

Lesson Scenario:
The total time for this topic is 10 hours, and it will be up to the trainer/coach to decide

how much time to dedicate to teaching each subtopic. In order to make the most of all

the time available, we propose the use of the training materials produced by the project

(PPT presentations), which were designed with an effective use of time in mind. These

presentations are composed of the following elements:

● Development of the subtopic and main ideas to retain;

● Proposed Activities/Exercises.

That said, if the trainer/coach follows the logical sequence of the PPTs, he/she will

certainly be able to complete the session within the stipulated time limit. These

presentations can also be made available to learners for individual study.

Subtopics:

2.1. The basics of HTML

2.2. HTML advanced concepts

2.3. HTML5 features

2.4. HTML5 references

Additional resources:

● HTML reference guide

● W3Schools - Guide for every HTML element and CSS rule, and examples for

each one of them

● Khan Academy: useful resources and videos on coding HTML & CSS, in many

different languages

https://www.codecademy.com/learn/learn-html/modules/learn-html-elements/cheatsheet
https://www.w3schools.com/
https://www.w3schools.com/
https://www.khanacademy.org/computing/computer-programming/html-css

22 | Page

2.1. The basics of HTML

HTML (Hypertext Markup Language) is not a programming language. It is a markup

language that communicates web browsers how to structure the web pages visited. It

can be as complex or as simple as the web developer wants it to be. HTML comprises

a series of elements, which you use to enclose, wrap, or rise different parts of content

to make it appear or act in a certain way. The enclosing tags can make content into a

hyperlink to connect to another page, italicize words, and so on. For example,

considering the following line of text:

Figure 1 - Line of text "HTML is cool" (Source: Author)

If one wanted the text to stand by itself, one could specify that it is a paragraph by

enclosing it in a paragraph (<p>) element:

Figure 2 – Coding for the paragraph "HTML is cool" (Source: Author)

Note: Tags in HTML are not case-sensitive. This means they can be written in

uppercase or lowercase. For example, a <title> tag could be written as <title>, <TITLE>,

<Title>, <TiTlE>, etc., and it will work. Nevertheless, it is best practice to write all tags

in lowercase for consistency and readability.

Anatomy of an HTML element

Let's further explore our paragraph element from the previous section:

23 | Page

Figure 3 – Anatomy of an HTML element (Source: Author)

Therefore, the anatomy of the element is composed of:

The opening tag: the name of the element (in this example, p for paragraph), wrapped

in opening and closing angle brackets. This opening tag marks where the element

begins or starts to take effect. In this example, it comes first, at the start of the paragraph

text.

The content: This is the content of the element. In this example, it is the paragraph text.

The closing tag: This is the same as the opening tag, except that it includes a forward

slash before the element name. This marks where the element ends. Failing to include

a closing tag is a common beginner error that can produce peculiar results.

The element is the opening tag, followed by content, followed by the closing tag.

Note: Some HTML elements have no content (as the
 element). These elements

are named “empty elements”. They do not have an end tag!

Web Browsers

The purpose of a web browser (Chrome, Edge, Firefox, Safari) is to read HTML

documents and display them properly.

24 | Page

A browser does not display the HTML tags. It uses them to determine how to display

the document:

Figure 4 – An HTML document determined in a web browser (Source:
https://www.w3schools.com/html/html_intro.asp)

HTML Page Structure

An HTML page should be structured as follows:

Figure 5 – Structure of an HTML page (Source: https://www.w3schools.com/html/html_intro.asp)

https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_intro.asp

25 | Page

The content inside the <body> section (the white area above) will be displayed in a

browser. The content inside the <title> element will be shown in the browser's title bar

or in the page's tab.

HTML History

Since the early days of the World Wide Web, there have been many versions of

HTML:

Year Version

1989 Tim Berners-Lee invented www

1991 Tim Berners-Lee invented HTML

1993 Dave Raggett drafted HTML+

1995 HTML Working Group defined HTML 2.0

1997 W3C Recommendation: HTML 3.2

1999 W3C Recommendation: HTML 4.01

2000 W3C Recommendation: XHTML 1.0

2008 WHATWG HTML5 First Public Draft

2012 WHATWG HTML5 Living Standard

2014 W3C Recommendation: HTML5

2016 W3C Candidate Recommendation: HTML 5.1

2017 W3C Recommendation: HTML5.1 2nd Edition

2017 - W3C Recommendation: HTML5.2

Table 1 – HTML story (Source: https://www.w3schools.com/html/html_intro.asp)

This manual follows the latest HTML5 standard.

https://www.w3schools.com/html/html_intro.asp

26 | Page

HTML Editors

A simple text editor is all you need to learn HTML.

Learn HTML Using Notepad or TextEdit

Web pages can be created and modified by using professional HTML editors.

However, for learning HTML a simple text editor like Notepad (PC) or TextEdit (Mac) is

recommended. Using a simple text editor can be a good way to learn HTML

The steps below should be followed to create learners’ first web page with Notepad or

TextEdit.

Step 1: Open Notepad (PC)

(Windows 8 or later: Open the Start Screen (the window symbol at the bottom left on

your screen). Type Notepad.

Windows 7 or earlier: Open Start > Programs > Accessories > Notepad)

● Open TextEdit (Mac)

● Open Finder > Applications > TextEdit

● Get the application to save files correctly. In Preferences > Format > choose

"Plain Text"

● Then under "Open and Save", check the box that says "Display HTML files as

HTML code instead of formatted text".

● Then open a new document to place the code.

Step 2: Writing Some HTML

● Write or copy the following HTML code into Notepad:

<!DOCTYPE html>

<html>

27 | Page

<body>

<h1> My First Heading</h1>

<p>My first paragraph.</p>

</body>

</html>

Step 3: Save the HTML Page

● Save the file on your computer.

● Select File > Save as in the Notepad menu.

● Name the file "index.htm" and set the encoding to UTF-8 (which is the preferred

encoding for HTML files).

Step 4: View the HTML Page in Your Browser

● Open the saved HTML file in your favorite browser (double click on the file, or right-

click - and choose "Open with").

The result will be similar to the following:

Figure 6 – An HTML document determined in a web browser (Source:
https://www.w3schools.com/html/html_intro.asp)

https://www.w3schools.com/html/html_intro.asp

28 | Page

HTML Basic Examples

In this section, some basic HTML examples will be shared.

HTML Documents

All HTML documents must start with a document type declaration: <!DOCTYPE html>.

The <!DOCTYPE> declaration represents the document type and helps browsers to

display web pages correctly. It must only appear once, at the top of the page (before

any HTML tags). It is not case sensitive.

The <!DOCTYPE> declaration for HTML5 is: <!DOCTYPE html>

HTML Headings

HTML headings are defined with the <h1> to <h6> tags.

<h1> defines the most important heading. <h6> defines the least important heading:

Figure 7 – HTML headings (Source: https://www.w3schools.com/html)

HTML Paragraphs

HTML paragraphs are defined with the <p> tag:

Figure 8 – HTML paragraphs (Source: https://www.w3schools.com/html)

https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_intro.asp

29 | Page

HTML Links

HTML links are defined with the <a> tag:

Figure 9 – HTML link (Source: https://www.w3schools.com/html)

The link's destination is specified in the href attribute.

Attributes are used to provide additional information about HTML elements.

More about attributes will be taught at a later stage.

HTML Images

HTML images are defined with the tag.

The source file (src), alternative text (alt), width, and height are provided as attributes:

Figure 10 – HTML images (Source: https://www.w3schools.com/html)

How to View HTML Source?

View HTML Source Code:

● Right-click in an HTML page and select "View Page Source" (in Chrome) or "View

Source" (in Edge), or similar in other browsers. This will open a window containing

the HTML source code of the page.

Inspect an HTML Element:

● Right-click on an element (or a blank area) and choose "Inspect" or "Inspect

Element" to see what elements are made up of (you will see both the HTML and

the CSS). You can also edit the HTML or CSS on-the-fly in the Elements or Styles

panel that opens.

https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_intro.asp

30 | Page

Figure 11 – How to view page source (Source:Author)

The structure of a HTML document

The HTML document itself begins with <html> and ends with </html>. The visible part

of the HTML document is between <body> and </body>.

Figure 12 – Document type declaration, HTML and visible part of the HTML document (Source:

https://www.w3schools.com/html)

HTML Attributes

HTML attributes provide additional information about HTML elements, and all HTML

elements can have them. Attributes provide additional information about elements,

being always specified in the start tag. They usually come in name/value pairs like:

name="value".

https://www.w3schools.com/html/html_intro.asp

31 | Page

List of common attributes:

● href – the <a> tag defines a hyperlink. The href attribute specifies the URL of the

page the link goes to, as follows:

 Visit W3Schools

● src – the tag is used to embed an image in an HTML page. The src attribute

specifies the path to the image to be displayed, as seen below:

There are two ways to specify the URL in the src attribute:

1. Absolute URL - Links to an external image that is hosted on another website. E.g.:

src="https://www.w3schools.com/images/img_girl.jpg".

Notes: External images might be under copyright. If one does not get permission to

use it, he/she may be in violation of copyright laws. In addition, external images cannot

be controlled; it can abruptly be removed or changed.

2. Relative URL - Links to an image that is hosted within the website. Here, the URL

does not include the domain name. If the URL begins without a slash, it will be relative

to the current page. E.g: src="img_girl.jpg". If the URL begins with a slash, it will be

relative to the domain. E.g.: src="/images/img_girl.jpg".

Hint: It is almost always best to use relative URLs. They will not break if the domain

changes.

● width and height attributes – the tag should also comprise the width and

height attributes, which stipulates the width and height of the image (in pixels):

32 | Page

● alt – the required alt attribute for the tag specifies an alternate text for an image,

if the image cannot be displayed for some reason. This can be due to slow connection,

or an error in the src attribute, or if the user uses a screen reader.

If we try to display an image that does not exist, the value of the alt attribute will be

displayed instead, as follows:

Figure 13 – Alt value if image does not exist (Source: https://www.w3schools.com/html)

● style – the style attribute is used to add styles to an element, such as color, font, size,

and more.

<p style="color:red;">This is a red paragraph.</p>

Result:

Figure 14 – Code for coloring a paragraph (Source: https://www.w3schools.com/html)

● lang – the lang attribute should always be included inside the <html> tag, to declare

the language of the Web page. This is meant to support search engines and browsers.

The example below stipulates English as the language in use:

<!DOCTYPE html>
<html lang="en">

https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_intro.asp

33 | Page

<body>
…
</body>
</html>

Country codes can also be added to the language code in the lang attribute. So, the first

two characters express the language of the HTML page, and the last two characters

outline the country.

The following example specifies Portuguese as the language and Portugal as the country:

<!DOCTYPE html>

<html lang="pt-PT">

<body>

...

</body>

</html>

HTML Language Code Reference includes all the language codes.

● title – this attribute describes some additional information about an element.

Its value will be displayed as a tooltip when the mouse pointer goes over the element,

as follows:

Figure 15 – Code for displaying a ‘title’ tooltip (Source: Author)

Recommendation: It is highly recommended to always use lowercase attributes and to

always quote attribute values for stricter document types like XHTML.

https://www.w3schools.com/tags/ref_language_codes.asp

34 | Page

HTML Headings

HTML headings are titles or subtitles that one wants to display on a webpage.

Figure 16 – Code for adding headings (Source: Author)

HTML headings are delineated with the <h1> to <h6> tags. <h1> identifies the most

important heading. <h6> outlines the least important heading. <h1> headings should be

used for main headings, followed by <h2> headings, then the less important <h3>, and

so on.

Headings are of upmost importance since search engines use them to index the

structure and content of webpages. Users often browse a page by its headings. It is

important to use headings to exhibit the document structure.

It is important to state that, by definition, browsers automatically add a margin before

and after a heading.

Recommendation: It is highly recommended to use HTML headings for headings

only, not to make text big or bold.

Moreover, in the CSS topic, it will be taught that headings’ size can be specified using

the style attribute, using the CSS font-size property, as follows:

35 | Page

<h1 style="font-size:60px;">Heading 1</h1>

HTML Paragraphs

A paragraph constantly starts on a new line and is typically a block of text. It is defined

by the HTML <p> element and, like headings, browsers automatically add some margin

before and after a paragraph.

Figure 17 – Code for adding paragraphs (Source: Author)

HTML Display

One cannot be sure how HTML will be presented, as it can vary from screen to screen.

With HTML, the display cannot be changed by adding extra spaces or extra lines in the

HTML code.

The browser will automatically remove any extra spaces and lines when the page is

displayed, as seen in the following example:

36 | Page

Figure 18 – Example of how browsers tend to ignore spaces (Source: https://www.w3schools.com/html)

HTML Line Breaks

The HTML
 element defines a line break. It is an empty tag, which means that it
has no end tag.

 should be used if one wants a new line without starting a new paragraph:

Figure 19 – The
 element (Source: Author)

https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_intro.asp

37 | Page

HTML Styles

The HTML style attribute is used to add styles to an element, such as color, font, size,

etc. To set the style of an HTML element, the style attribute must be used. It has the

following syntax (it should be noted that property and value are CSS features, to be

learned later).

<tagname style="property:value;">

● Background Colour

The CSS background-color property specifies the background colour for an HTML

element.

Figure 20 – Setting a background colour (Source: Author)

● Text Colour

The CSS color property outlines the text colour for an HTML element:

Figure 21 – Setting a background colour (Source: Author)

https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_intro.asp

38 | Page

● Fonts

The CSS font-family property defines the font to be used for an HTML element:

Figure 22 – Setting the font to be used for an HTML element (Source: Author)

● Text Size

The CSS font-size property identifies the text size for an HTML element:

Figure 23 – Setting the text size for an HTML element (Source: Author)

● Text Alignment

The CSS text-align feature defines the horizontal text alignment for an HTML element:

https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_intro.asp

39 | Page

Figure 24 – Text Alignment feature (Source: Author)

HTML Text Formatting

HTML comprises various elements for defining text with a special implication (bold, italic,

subscript, superscript, etc.).

The following are the HTML formatting elements:

Property Outcome Definition Example

 Bold text The HTML element

specifies bold text, without

any extra importance.

Bold text

 Important text The HTML element

describes text with strong

importance. The content

inside is usually displayed in

bold.

Important text

<i> Italic text The HTML <i> element

defines a part of text in an

alternate voice or mood.

The content inside is

typically displayed in italic.

Italic text

 Emphasized

text

The HTML element

defines emphasized text.

The content inside is

typically displayed in italic.

Emphasized text

<mark> Marked text The HTML <mark> element

defines text that should be

marked or highlighted.

Marked text

https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_intro.asp

40 | Page

<small> Smaller text The HTML <small> element

defines smaller text.

Smaller text

 Deleted text The HTML element

defines text that has been

deleted from a document.

Browsers will usually strike a

line through deleted text.

Deleted text

<ins> Inserted text The HTML <ins> element

defines a text that has been

inserted into a document.

Browsers will usually

underline inserted text:

Inserted text.

<sub> Subscript text The HTML <sub> element

expresses subscript text.

Subscript text appears half a

character below the normal

line and is sometimes

rendered in a smaller font.

Subscript text can be used

for Chemistry, like H2O.

Subscript text

<sup> Superscript text The HTML <sup> element

specifies superscript text.

Superscript text appears half

a character above the

normal line and is

sometimes rendered in a

smaller font. Superscript

text can be used for

footnotes, as WWW [1]:

Superscript text

41 | Page

HTML Text Formatting

HTML <blockquote> for Quotations

The HTML <blockquote> element identifies a section that is quoted from another source.

Browsers typically indent <blockquote> elements, as can be seen below:

Figure 25 – The blockquote element (Source: Author)

HTML <q> for Short Quotations

The HTML <q> tag specifies a short quotation. Browsers generally insert quotation

marks around the quotation, as follows:

Figure 26 – The short quotation’s element (Source:
https://www.w3schools.com/html/html_quotation_elements.asp)

https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_quotation_elements.asp

42 | Page

HTML <abbr> for Abbreviations

The HTML <abbr> tag specifies an abbreviation or an acronym, like "HTML", "CSS",

"Mr.", "Dr.", "ASAP", etc. Marking abbreviations can give valuable information to

browsers, translation systems and search engines, as seen previously. In case one does

not know the meaning of any given abbreviation, he/she could use the global title

attribute to show the description for the abbreviation/acronym when mousing over the

element, as seen below:

Figure 27 – The <abbr> element and the mouse over function (Source: Author)

HTML <address> for Contact Information

The HTML <address> tag defines the contact information for the author/owner of a

document or an article. It can be an email address, URL, physical address, phone

number, etc. The text comprised in the <address> element is typically presented in

italic, and browsers will always add a line break before and after it, as follows:

https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_intro.asp

43 | Page

Figure 28 – The <address> element (Source: Author)

HTML <cite> for Work Title

The HTML <cite> tag defines the title of a book, a poem, a song, a movie, a painting,

and all creative works. It should be stated that the author’s name is not the title of a

work.

As in the aforementioned tags, the text in the <cite> element normally renders in italic:

Figure 29 – The <cite> element (Source: https://www.w3schools.com/html/html_quotation_elements.asp)

HTML <bdo> for Bi-Directional Override

HTML <bdo> tag stands for "bidirectional override" which is used to override the

current/default text direction. This tag sets the direction of content within it to execute

on browser from left to right or right to left (rtl – right to left; ltf – left to right).

https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_quotation_elements.asp

44 | Page

Figure 30 – The <bdo> element (Source: https://www.w3schools.com/html/html_quotation_elements.asp)

HTML Comments

Add Comments

This element is used to add a comment to an HTML document. An HTML comment

begins with <!–– and closes with ––>. HTML comments are visible to anyone that views

the page source code but are not rendered when the HTML document is rendered by a

browser. It should be noted that there is an exclamation point in the start tag, but not in

the end tag. This feature is especially useful for placing notifications and reminders in

the HTML code:

Figure 31 – The Comments feature (Source: Author)

Hide Content

https://www.w3schools.com/html/html_quotation_elements.asp

45 | Page

Comments can also be used to hide content, and that can be helpful if one hides it for

the moment. You can also hide more than one line, everything between the <!-- and the

--> will be hidden from the display. Comments are also great for debugging HTML,

because one can comment out HTML lines of code, one at a time, to search for errors.

Figure 32 – The hide content feature (Source: Author)

HTML Colours

HTML colours are stipulated with predefined colour names, or with RGB, HEX, HSL,

RGBA, or HSLA values.

Figure 33 – Some colour names one can define (Source: https://www.w3schools.com/html/html_colors.asp)

https://www.w3schools.com/html/html_colors.asp

46 | Page

Colours can also be set for the page background:

Figure 34 – Defining a webpage’s background colour (Source:Author)

The same principle can be applied to the text colour:

Figure 35 – Defining the text colour (Source:Author)

Also, for the colour of borders:

47 | Page

Figure 36 – Adding borders and defining their colour (Source:Author)

Colour Values

As stated above, HTML colours are stipulated with predefined colour names, or with

RGB, HEX, HSL, RGBA, or HSLA values. The following three <div> elements have their

background color set with RGB, HEX, and HSL values:

Figure 37 – RGB, HEX, and HSL values for the Tomato colour (Source:

https://www.w3schools.com/html/html_colors.asp)

Transparency is also a feature that could be added when defining a colour, by adding

an Alpha channel to it. The following example as 50% transparency:

Figure 38 – Setting transparency values for the Tomato colour (Source:

https://www.w3schools.com/html/html_colors.asp)

https://www.w3schools.com/html/html_colors.asp
https://www.w3schools.com/html/html_colors.asp

48 | Page

The code for setting up both features will ease learners’ understanding. As seen, it

comprises CSS features to be explored later:

Figure 39 – Setting colour and transparency of the Tomato colour (Source:

https://www.w3schools.com/html/html_colors.asp)

More information concerning RGB, HEX, HSL, RGBA, or HSLA values can be found at

https://www.w3schools.com/html/html_colors.asp

HTML Links

Links can be found in nearly all webpages. They allow internet users to navigate from

page to page. It does not have to be text, as it can be an image or any other HTML

element.

https://www.w3schools.com/html/html_colors.asp
https://www.w3schools.com/html/html_colors.asp

49 | Page

Hyperlinks

HTML links are hyperlinks, which can be clicked, jumping to another document.

When the mouse is moved over a link, the mouse arrow will turn into a little hand.

Syntax

The HTML <a> tag defines a hyperlink. It has the following syntax:

link text

The most significant attribute of the <a> element is the href attribute, which indicates

the link's destination. The link text is the part that will be visible to the user. By clicking

on the link text, the reader will be redirected to the required URL address.

By default, links will be seen in all browsers as follows:

● An unvisited link is underlined and blue

● A visited link is underlined and purple

● An active link is underlined and red

Note: Link colours can be changed by using CSS features.

The target attribute

By default, the linked page will be shown in the current browser window. To modify this,

learners must indicate another target for the link.

The target attribute indicates where to open the linked document. It can have one of the

following values:

● _self - Default. Opens the document in the same window/tab as it was clicked

● _blank - Opens the document in a new window or tab

● _parent - Opens the document in the parent frame

50 | Page

● _top - Opens the document in the full body of the window

Using an image as a Link

To use an image as a link, just put the tag inside the <a> tag, as it can be checked

over the following tutorial:

https://www.w3schools.com/html/tryit.asp?filename=tryhtml_links_image

Linking an email address

To create a link that opens the user's email software (letting them send a new email),

mailto: should be added inside the href attribute, following the next example:

.

Send email

Create a Bookmark in HTML

HTML links can be applied to make bookmarks, so that readers can jump to particular

parts of a web page, and it can be truly useful if the web page is very long. This process

is composed of two very simple steps:

● To create a bookmark - first the bookmark should be created, and then a link

should be added to it. To create, the id attribute should be used (e.g.:

<h2 id="C1">Chapter 1</h2>), then, a link to the bookmark, from within the

same page, should be added (e.g.: Jump to Chapter 4)

● When the link is clicked, the page will scroll to the location with the bookmark.

https://www.w3schools.com/html/tryit.asp?filename=tryhtml_links_image

51 | Page

HTML Images

Inserting images into webpages

Images improve visual look of the web pages by making them more appealing and

colourful. The tag is used to add images in the HTML pages. It is an empty

element and contains attributes only.

Each image must have at least two attributes: the src and alt attributes. The src attribute

informs the browser where to find the image, being its value the URL of the image file.

The alt attribute provides an alternative text for the image if it is inaccessible or cannot

be displayed for some reason (slow connection, image is not available at the specified

URL, or if the user uses a screen reader or non-graphical browser). Its value should be

a meaningful substitute for the image, preferably a suggestive text.

Images improve visual look of the web pages by making them more appealing and

colourful. The tag is used to add images in the HTML pages. It is an empty

element and contains attributes only.

Each image must have at least two attributes: the src and alt attributes. The src attribute

informs the browser where to find the image, being its value the URL of the image file.

The alt attribute provides an alternative text for the image if it is inaccessible or cannot

be displayed for some reason (slow connection, image is not available at the specified

URL, or if the user uses a screen reader or non-graphical browser). Its value should be

a meaningful substitute for the image, preferably a suggestive text.

52 | Page

Figure 40 – Adding an image to a HTML document, using the src and alt attributes (Source:Author)

Setting the Width and Height of an Image

The width and height attributes are used to indicate the width and height of an image.

The values of these attributes are interpreted in pixels by default. It's a good practice to

specify both the width and height attributes, so that browser can assign that much of

space for the image before it is transferred.

Figure 41 – Setting the height and width of an image (Source:

https://www.tutorialrepublic.com/codelab.php?topic=html&file=specify-dimensions-for-images)

The style attribute can also be used to indicate width and height. It prevents style sheets

from changing the image size by accident, because inline style has the highest priority.

https://www.tutorialrepublic.com/codelab.php?topic=html&file=specify-dimensions-for-images

53 | Page

Using the HTML5 Picture Element

Now and then, scaling an image up or down to fit different devices (or screen sizes)

does not work as expected. In addition, reducing the image dimension using the width

and height attribute does not decrease the initial file size. In order to solve these

problems, HTML5 has introduced the <picture> tag that allows to define multiple

versions of an image to target different types of devices.

The <picture> element contains zero or more <source> elements, each referring to

different image source, and one element at the end. Likewise, each <source>

element has the media attribute which specifies a media condition that is used by the

browser to determine when a particular source should be used.

Image Maps

An image map allows one to define hotspots on an image that acts out just like a

hyperlink. The key idea behind creating an image map is to give an simple way of

linking various parts of an image without dividing it into separate image files. For

example, a map of a country may have each city hyperlinked to more information

about that city.

The following example is pretty accurate about these features:

https://www.tutorialrepublic.com/codelab.php?topic=html&file=image-maps

The name attribute of the <map> tag is used to reference the map from the tag

using its usemap attribute. The <area> tag is used inside the <map> element to define

the clickable areas on an image. Any number of clickable areas can be defined within

an image.

HTML Favicon

A favicon is a small image displayed to the left of the page title in the browser tab:

https://www.tutorialrepublic.com/codelab.php?topic=html&file=image-maps

54 | Page

Figure 42 – Code4SP’s favoticon (Source: Author)

To add a favicon to a website, a favicon image should be saved to the root directory of

webserver. Other way is by creating a folder in the root directory called images, then

saving the favicon image in this folder. A common name for a favicon image is

"favicon.ico".

Next, a <link> element should be added to the "index.html" file, after the <title> element,

as follows:

<!DOCTYPE html>

<html>

<head>

 <title>Code4SP</title>

 <link rel="icon" type="image/x-icon" href="/images/favicon.ico">

</head>

<body>

<h1>Our project</h1>

<p>Co-funded by the E+ fund of the EC.</p>

</body>

</html>

55 | Page

HTML Tables

Creating Tables in HTML

HTML tables allow to arrange data into rows and columns. They are generally used to

display tabular data like product listings, customer's details, financial reports, etc.

A table can be created using the <table> element. Inside the <table> element, the <tr>

elements can be utilized to create rows, and to create columns inside a row the <td>

elements can be used. A cell can be defined as a header for a group of table cells using

the <th> element.

Tables do not have any borders by default. The CSS border property can be used to

add borders to the tables. Furthermore, table cells are sized just large enough to fit the

contents by default. To add more space around the content in the table cells, the CSS

padding property can be used.

By default, borders around the table and their cells are separated from each other. But

they can be collapsed into one by using the border-collapse property on the <table>

element. Additionally, text inside the <th> elements is displayed in bold font, aligned

horizontally center in the cell by default. To change the default alignment, the CSS text-

align property can be used. To do so, it is suggested that learners reach the CSS topic

first. Most of the <table> element's attribute such as border, cellpadding, cellspacing,

width, align, etc. for styling table appearances in earlier versions has been dropped in

HTML5, so they should be avoided. CSS should be privileged to style HTML tables.

56 | Page

Figure 43 – A basic table (Source: Author)

Spanning Multiple Rows and Columns

Spanning allows to extend table rows and columns across multiple other rows and

columns. Usually, a table cell cannot pass over into the space below or above another

table cell. However, the rowspan or colspan attributes can be used to span multiple rows

or columns in a table.

Likewise, the rowspan attribute can be used to create a cell that spans more than one

row, as follows:

57 | Page

Figure 44 – The rowspan attribute (Source: https://www.tutorialrepublic.com/html-tutorial/html-tables.php)

Table captions

A caption (or title) for tables can be created by using the <caption> element. This

element should be placed directly after the (opening) <table> tag. By default, caption

appears at the top of the table, but this can be changed by using the CSS caption-side

property.

Figure 45 – Adding table captions (Source: https://www.wikitechy.com)

https://www.tutorialrepublic.com/html-tutorial/html-tables.php
https://www.wikitechy.com/

58 | Page

Defining a Table Header, Body, and Footer

HTML provides a series of tags <thead>, <tbody>, and <tfoot> that aid learners to

create more coordinated tables, by defining header, body and footer regions, in that

order.

Figure 46 – Adding table captions (Source: https://www.tutorialrepublic.com/html-tutorial/html-tables.php)

https://www.tutorialrepublic.com/html-tutorial/html-tables.php

59 | Page

HTML Lists

HTML lists are applied to present information in a well-formed and semantic way. Inside

of them, one can add text, images, links, line breaks, etc. There are three different types

of lists in HTML and each one has a specific purpose and meaning:

● A) Unordered lists — Used to create a list of related items, in no particular order.

● B) Ordered lists — Used to create a list of related items, in a certain order.

● C) Description lists — Used to create a list of terms and their descriptions.

A) Unordered lists

An unordered list created using the element, and each list item begins with the

 element. It is marked with bullets, as follows:

Figure 47 – Unordered Lists (Source: Author)

B) Ordered lists

An ordered list is created by using the element, and each list item starts with

the element. Ordered lists are used when the order of the list's items is critical.

It is marked with numbers, as follows:

https://www.tutorialrepublic.com/html-tutorial/html-tables.php

60 | Page

Figure 48 – Ordered Lists (Source: Author)

C) Description Lists

A description list is a list of items with a description or definition of each item.

The description list is created using <dl> element. The <dl> element is used in

conjunction with the <dt> element which specify a term, and the <dd> element

which specify the term's definition.

Browsers usually render the definition lists by placing the terms and definitions in

separate lines, where the term's definitions are slightly indented.

Figure 49 – Description Lists (Source: Author)

https://www.tutorialrepublic.com/html-tutorial/html-tables.php
https://www.tutorialrepublic.com/html-tutorial/html-tables.php

61 | Page

HTML Forms

HTML Forms are expected to collect different types of user inputs, such as contact

details (name, email, phone number, bank account, etc.). Forms include special

elements known as controls like input box, checkboxes, radio-buttons, submit buttons,

etc. To this end, users fill in a form with this data, either via text or box selection,

submitting it later to a webserver for processing this data.

The <form> tag is used to generate an HTML form. A simple example of a login form

would be as follows:

Figure 50 – Example of a login form (Source: https://www.tutorialrepublic.com/html-tutorial/html-forms.php)

There are different types of controls to be applied in a HTML form, being input elements

the most frequently used ones. They identify various types of user input fields,

depending on the type attribute. Input elements can be text fields, password fields,

checkboxes, submit buttons, reset buttons, file select boxes, as well as several

new input types introduced in HTML5 (they can be checked out here).

Text fields are areas that let users add text. These are created by using an <input>

element, whose type attribute has a value of text. It should be noted that the <label> tag

is used to identify the labels for <input> elements. If the webmaster wants his/her users

to enter several lines, <textarea> should be added instead.

https://www.tutorialrepublic.com/html-tutorial/html-forms.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php

62 | Page

Figure 51 – Text field example (Source: Author)

Password fields are like text fields, being the only difference characters in a

password field are hidden, so they are displayed as asterisks or dots. Likewise, this

procedure prevents someone else from reading the password on the screen. This is as

well a single-line text input control generated using an <input> element whose type

attribute has a value of password.

Figure 52 – Password field example (Source: https://www.tutorialrepublic.com/html-tutorial/html-forms.php)

Radio buttons are applied to allow the user select exactly one option from a pre-

specified set of options. It is generated using an <input> element whose type attribute

has a value of radio.

https://www.tutorialrepublic.com/html-tutorial/html-forms.php

63 | Page

Figure 53 – Code for setting up radio buttons (Source: Author)

Checkboxes make available to the user one or more choices from a pre-defined set of

options. It is generated using an <input> element whose type attribute has a value of

checkbox. If one prefers to generate a checkbox (or radio button) selected by default,

one simply must add the attribute checked to the input element (<input

type="checkbox" checked>).

Figure 54 – Code for setting up checkboxes (Source: Author)

File select boxes allow a user to browse for a local file and send it as an attachment

with the form data. E.g., Google Chrome provides a file select input field with a

‘Browse’ button that permits the user to select a file from his/her hard drive.

64 | Page

File select boxes are also created using an <input> element, whose type attribute

value is set to file.

Figure 55 – Code for setting up file select boxes (Source: Author)

Textarea can be defined as a multiple-line text input control that allows to enter more

than one line of text. These controls are created using an <textarea> element, as

follows:

Figure 56 – Code for setting up a multiple-line text input control (Source: Author)

Select boxes are dropdown lists of options in which a user can select one or more

options from a pull-down menu. They are created by using the <select> element and

<option> element. The <option> elements within the <select> element define each list

item.

65 | Page

Figure 57 – Code for setting up select boxes (Source: Author)

Submit and reset buttons are very common in most of the websites. Submit buttons

are used to send (form) data to a web server, while reset buttons are created to reset

the form to default values. When the user clicks the submit button, the form data is

sent to the file specified in the form's action attribute to process the submitted data.

Buttons can also be created using the <button> element. They have the same purpose

as buttons created with the input element. However, they offer more rendering

possibilities, as they allow the embedding of other HTML elements.

Figure 58 – Code for setting up submit and reset buttons (Source: Author)

Grouping form controls are a great tool for users to locate a control, making the form

more accessible. The <legend> element is key for creating logically related controls,

as seen in the picture below:

https://www.tutorialrepublic.com/html-reference/html-button-tag.php

66 | Page

Figure 59 – Code for setting up grouping form controls (Source: Author, check this for better definition)

Below there is a list of frequently used form element’s attributes:

Attribute Description

name Specifies the name of the form.

action Specifies the URL of the program or script on the web server that will be used for
processing the information submitted via form.

method Specifies the HTTP method used for sending the data to the web server by the
browser. The value can be either get (the default) and post.

target Specifies where to display the response that is received after submitting the form.
Possible values are _blank, _self, _parent and _top.

enctype Specifies how the form data should be encoded when submitting the form to the
server. Applicable only when the value of the method attribute is post.

Table 2 – List of frequently used form element’s attributes (Source: https://www.tutorialrepublic.com/html-

tutorial/html-forms.php)

More information regarding other attributes can be found here.

https://www.tutorialrepublic.com/codelab.php?topic=html&file=group-form-controls
https://www.tutorialrepublic.com/html-tutorial/html-forms.php
https://www.tutorialrepublic.com/html-tutorial/html-forms.php
https://www.tutorialrepublic.com/html-reference/html-form-tag.php

67 | Page

HTML iFrame

An iframe (or inline frame) is used to exhibit external objects within a web page, including

other web pages. An iframe pretty much performs like a mini web browser within a web

browser. Likewise, the content inside an iframe occurs separate from the adjacent

elements.

The basic syntax for adding this feature to a web page is as follows:

<iframe src="URL"></iframe>

The URL specified in the src attribute indicates the location of an external object or a

web page.

Figure 60 – Code for setting up an inline frame (Source: Author)

The height and width of the iframe can be defined by applying the code disposed on

Figure 61 below. The width and height attribute values are stipulated in pixels by default,

but users can also set these values in percentage, such as 50%, 100%, etc.. The default

width of an iframe is 300 pixels, while the default height is 150 pixels.

68 | Page

Figure 61 – Code for setting up height and width of an inline frame (Source: Author)

As it could be verified, iframe has a border around it set by default. To modify or remove

it, the best way is to use the CSS border feature (to be taught in the CSS topic).

An iframe can also be used as a target for the hyperlinks. It can be named using the

name attribute. This means that when a link with a target attribute (with that name set

as value) is clicked, the linked source will open in the same inline frame, as follows:

Figure 62 – Using iframe as a target for a hyperlink (Source: Author)

69 | Page

2.2. HTML advanced concepts

HTML Doctypes

A Document Type Declaration (DOCTYPE) is an instruction to the web browser

concerning the version of markup language in which a web page is created. It appears

at the top of a web page before all other elements. According to the HTML specification,

every HTML document requires a valid document type declaration to ensure that web

pages are displayed the way they are meant to be. The doctype declaration is frequently

the first thing defined in an HTML document (even before the opening <html> tag);

nevertheless, the doctype declaration itself is not an HTML tag.

The DOCTYPE for HTML5 is very short, concise, and case-insensitive: <!DOCTYPE

html>.

The following markup can be used as a template to create a new HTML5 document:

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8">

<title><!-- Insert your title here --></title> </head> <body> <!--

Insert your content here --> </body> </html>

HTML Layouts

There are different methods of creating a web page layout, positioning the various

elements that compose a web page in a well-structured manner and giving an engaging

appearance to the website. Most websites usually display their content in multiple rows

and columns, configured like a magazine to provide the users with a better reading and

writing atmosphere. This can be easily attained by utilizing the HTML tags, such as

<table>, <div>, <header>, <footer>, <section>, etc. and combining some CSS styles to

them.

70 | Page

The simplest way for creating layouts in HTML is indeed obtained by designing tables.

As seen in the previous sections, this usually involves the process of putting contents

(text, images, etc.) into rows and columns.

The layout below contains an HTML table with three rows and two columns. It should

be noted that the first and last row spans both uses the colspan attribute. It should be

stated that the method used for creating layout in this example, although it is not wrong,

it is not recommended. Tables and inline styles for creating layouts should be avoided.

Layouts created using tables often rendered very slowly. Tables should only be used

to display tabular data. For creating such layouts, CSS float techniques are advised.

Users shall learn about this tool moreover.

Figure 63 – HTML basic layout (Source: Author, adapted from Tutorial Republic. Click here for better resolution)

HTML5 has established new structural elements, for instance <header>, <footer>,

<nav>, <section>, etc. to identify the different parts of a web page in a more semantic

way. This example applies the new HTML5 structural elements to create the same

layout created in Figure 62.

To know more about newly introduced tags, learners should visit this source.

https://www.tutorialrepublic.com/codelab.php?topic=html&file=table-layout
https://www.tutorialrepublic.com/codelab.php?topic=html5&file=semantic-website-layout
https://www.tutorialrepublic.com/html-reference/html5-tags.php

71 | Page

HTML Head

The head element is the receptacle for all head elements, which provide extra

information about the document or reference to other resources, required for the

document to perform properly. It illustrates the properties of the document such as title,

deliver meta information like character set, tell the browser where to find the style sheets

or scripts that allows to expand the HTML document interactively.

The HTML elements that can be used inside the <head> element are: <title>, <base>,

<link>, <style>, <meta>, <script> and <noscript>.

The HTML title Element

The <title> element identifies the title of the document and only one is required in all

HTML/XHTML documents to produce a valid document. It must be placed within the

<head> element. The title element comprises plain text and entities and it may not

include other markup tags. It may be used for different functions:

● To show a title in the browser title bar and in the task bar;

● To deliver a title for the page when it is added to favourites or bookmarked;

● To present a title for the page in search-engine results (e.g., Google search).

It should be short and specific to the content of the document, as search engines would

pay particular attention to the words present in the title – it should have ideally 65

characters.

A title in an HTML document should be displayed as follows:

<!DOCTYPE html> <html lang="en"> <head> <title>A simple HTML

document</title> </head> <body> <p>Hello World! </p> </body> </html>

72 | Page

The HTML base Element

The HTML <base> element is used to identify a base URL for all relative links contained

in the document. For example, one can set the base URL once at the top of the page,

and then all subsequent relative links will use that URL as a starting point, as follows:

<!DOCTYPE html> <html lang="en"> <head> <title>Defining a base

URL</title> <base href=" https://code4sp.eu/the-project/ "> </head>

<body> <p>HTML Head.

</p> </body> </html>

Figure 64 – HTML base element (Source: Author)

The HTML <base> element must be found before any element that belongs to an

external resource. HTML permits only one base element for each document.

The HTML link Element

The <link> element describes the correlation between the current document and an

external document or resource. A common use of link element is to connect to external

style sheets.

73 | Page

Figure 65 – HTML base element (Source: https://www.tutorialrepublic.com/codelab.php?topic=html&file=linking-

style-sheet)

It should be stated that an HTML document's <head> element may include any number

of <link> elements. The <link> element has attributes, but no contents.

The HTML style Element

The <style> element is applied to describe embedded style information for an HTML

document. The style rules inside the <style> element indicate how HTML elements

should render in a browser. An embedded style sheet should be used when a single

document has a unique style. If the same style sheet is used in various documents, then

an external style sheet would be more suitable.

Figure 66 – Coding various style elements (Source: Author)

The HTML meta Element

The <meta> element provides metadata about the HTML document, which is a set of

data that describes and gives information about other data. <meta> tags always appear

inside the <head> element, and are typically used to specify character set, page

description, keywords, author of the document, and viewport settings.

https://www.tutorialrepublic.com/codelab.php?topic=html&file=linking-style-sheet
https://www.tutorialrepublic.com/codelab.php?topic=html&file=linking-style-sheet

74 | Page

Figure 67 – The meta element (Source: Author)

As seen above, meta tags include information about a web page. It is not visible in the

browser (it is machine parsable though). Metadata is utilised by browsers (how to display

content or reload page), search engines (keywords), and other web services. Moreover,

there is a technique to let web designers rule over the viewport, through the <meta>

tag. The viewport is the user's visible area of a web page. It differs from device to device

(it will be bigger on a computer screen than on a mobile phone).

The following <meta> element should be included in all web pages, as it will give the

browser guidelines on how to assume the page dimensions and scaling:

<meta name="viewport" content="width=device-width, initial-scale=1.0">

The width=device-width part sets the width of the page to follow the screen-width of

the device (which will vary depending on the screen). The initial-scale=1.0 part sets

the initial zoom level when the page is initially loaded by the browser.

The difference between webpages with or without viewport meta tag is quite visible in

the following example:

75 | Page

Figure 68 – With or without viewport meta tags examples (Source: https://www.w3schools.com/tags/tag_meta.asp)

The HTML script Element

The <script> element is used to define client-side script, such as JavaScript in HTML

documents.

Figure 69 – The script element (Source: Author)

Working with Client-side Script

Client-side scripting is linked to the type of computer programs that are performed by

the user's web browser. JavaScript (JS) is the most widespread client-side scripting

language on the web. The <script> element is used to embed or reference JavaScript

within an HTML document to add interactivity to web pages and to create a more user-

friendly experience. Some of the most common uses of JavaScript are form validation,

https://www.w3schools.com/tags/tag_meta.asp

76 | Page

generating alert messages, creating image gallery, show hide content, DOM

manipulation, etc.

JavaScript can be embedded following two ways:

1. Directly inside the HTML page; or

2. Placed in an external script file and referenced inside the HTML page.

Note: both techniques use the <script> element.

To embed JS in an HTML file, the user must add the code as the content of the <script>

element, following the example of Figure 66. Preferably, script elements should be

placed at the end of the page, before the closing body tag (</body>), because when

browser encounters a script, it pauses rendering the rest of the page until it deconstructs

the script that may drastically impact the website performance.

Figure 70 – Embedding JS in an HTML doc (Source: Author)

JavaScript codes can also be placed into a separate file, calling up a .js extension, while

corresponding it in the HTML document by using the src attribute of the <script> tag.

This can be especially useful if the web designer wants to make the same script

available for multiple documents, so he/she does not need to perform the same tasks

repeatedly. When the src attribute is indicated, the <script> element should be empty,

77 | Page

so the web designer cannot use the same <script> element to both embed the

JavaScript and to link to an external JavaScript file in an HTML document.

If a browser, for some reason, does not support client-side scripting, or users have

disabled JS in their browser, the <no script> element can be used to provide an

alternative content. This element can include any HTML elements, except <script>, as

it can be included in the <body> element of a HTML page.

HTML Entities

Most learners will certainly be curious about how to display special characters and

symbols in their programming processes. Hence, this subchapter is intended to explain

how they can be successful in doing such thing.

First, it is important to understand what a HTML entity is. As perceived in the previous

chapters, some characters are quite reserved in HTML. For instance, one cannot use

signs such as ‘<’ or ‘>’, as the browser could mistake them for a markup. Moreover,

some characters are just not available in the keyboard (e.g., the copyright symbol).

These special characters can be displayed by simply being replaced with the character

entities (or just entities), then solving the aforementioned troubles. Below is a list of the

most frequently used entities in HTML:

Result Description Entity Name Numerical reference

 non-breaking space

< less than < <

> greater than > >

& ampersand & &

78 | Page

" quotation mark " "

' apostrophe ' '

¢ cent ¢ ¢

£ pound £ £

¥ yen ¥ ¥

€ euro € €

© copyright © ©

® registered trademark ® ®

™ trademark ™ ™

Table 3 – The most frequent entities in HTML (Source: https://www.tutorialrepublic.com/html-tutorial/html-

entities.php)

Numeric character references can also be used as an alternative for entity names,

especially because they have stronger browser support, and can be used to specify any

Unicode character, however entities are limited to a subgroup of this.

HTML URL

URL: how many times has this abbreviation appeared in virtual environments? It stands

for Uniform Resource Locator, and it works as the global address of documents and

other resources on the World Wide Web. Its goal is to identify the location of a document

and other resources available online, while specifying the mechanism for accessing it

using a web browser. For instance, https://code4sp.eu/ is an URL.

https://www.tutorialrepublic.com/html-tutorial/html-entities.php
https://www.tutorialrepublic.com/html-tutorial/html-entities.php
https://code4sp.eu/

79 | Page

The general syntax of URLs can be described as follows:

scheme://host:port/path?query-string#fragment-id

URLs have a linear structure and are composed of the following components:

● Scheme name — The scheme recognizes the protocol to be used to access a

resource on the Internet. The scheme names are followed by the three characters

:// (a colon and two slashes). The most used protocols are http://, https://, ftp://,

and mailto://.

● Host name — identifies the host where the resource is situated. A hostname is

a domain name given to a host computer. This is usually a combination of the

host's local name with its parent domain's name. For example, www.code4sp.eu/

consists of host's machine name www and the domain name code4sp.eu.

● Port Number — Servers often deliver more than one type of service, so they

must be told what service is being requested. These requests are made by port

number. Well-known port numbers for a service are normally omitted from the

URL. For example, web service HTTP runs by default over port 80, HTTPS runs

by default over port 443.

● Path — identifies the specific resource within the host that the user wants to

access. For example, /html/html-url.php, /news/technology/, etc.

● Query String — contains data to be passed to server-side scripts, running on

the web server. For instance, parameters for a search. The query string preceded

by a question mark (?), is usually a string of name and value pairs separated by

ampersand (&), for example, ?first_name=John&last_name=Corner,

q=mobile+phone, and so on.

● Fragment identifier —specifies a location within the page. Browser may scroll

to display that part of the page. The fragment identifier introduced by a hash

character (#) is the optional last part of a URL for a document.

http://www.code4sp.eu/

80 | Page

HTML URL Encoding

It is well-known that sometimes data is not safely transmitted over the internet. This

happens mostly because URLs are not fully or accurately encoded and causes some

misunderstandings among internet users.

According to RFC 3986, the characters in a URL only restricted to a defined set of

reserved and unreserved US-ASCII characters. Any other characters are not allowed in

a URL (that is why some Latin and Cyrillic characters are not seen in URL). But URL

often comprises characters outside the US-ASCII character set, so they must be

converted to a valid US-ASCII format for worldwide interoperability. URL-encoding is a

process of converting URL information so that it can be safely transmitted over the

internet.

To map the large range of characters used globally, a two-step method is followed:

● Firstly, the data is encoded in relation to the UTF-8 character encoding.

● Then only those bytes that do not correspond to characters in the unreserved set

should be percent-encoded like %HH, where HH is the hexadecimal value of the

byte.

For instance, look at this Portuguese popular saying:

“Quem vê caras, não vê corações.” [“Faces we see, hearts we do not know.”]

This sentence would be encoded as:

Quem%20v%C3%AA%20caras%2C%20n%C3%A3o%20v%C3%AA%20cora%C3%A

7%C3%B5es.

Ç, ç (c-cedilla) is a Latin script letter, as well as well as the accents used (~ and ^).

https://tools.ietf.org/html/rfc3986

81 | Page

Certain characters are restricted from use in a URL, as they may (or may not) be defined

as delimiters by the generic syntax in a particular URL scheme (for instance, forward

slash / characters are used to separate different parts of a URL).

Reserved characters in a URL are as follows:

Figure 71 – Reserved characters in a URL (Source: https://www.tutorialrepublic.com/html-tutorial/html-url-

encode.php)

However, there are also characters that, despite of being allowed in a URL, do not have

a reserved purpose – that is why they are called “unreserved characters”.

These include uppercase and lowercase letters, decimal digits, hyphen, period,

underscore, and tilde. The following table lists all the unreserved characters in a URL:

Figure 72 – Unreserved characters in a URL (Source: https://www.tutorialrepublic.com/html-tutorial/html-url-

encode.php)

For encoding/decoding characters, users may use this converter.

HTML Validation

To make sure a HTML code follows the current web standards, free from errors, it is of

upmost importance to figure out how to validate a HTML code. Beginners often will make

mistakes when writing HTML codes, and incorrect or non-standard codes will certainly

cause unexpected results in how a web page is displayed in a browser.

https://www.tutorialrepublic.com/html-tutorial/html-url.php
https://www.tutorialrepublic.com/html-tutorial/html-url-encode.php
https://www.tutorialrepublic.com/html-tutorial/html-url-encode.php
https://www.tutorialrepublic.com/html-tutorial/html-url-encode.php
https://www.tutorialrepublic.com/html-tutorial/html-url-encode.php
https://www.url-encode-decode.com/

82 | Page

In order to prevent this to happen, users can test their codes within the formal guidelines

and standards set by the Wide Web Consortium (W3C) for HTML/XHTML web pages.

There is an online tool that automatically checks HTML codes and points out any

problems/errors, like missing closing tags or missing quotes around attributes.

The process of validating a web page is ensuring the respect for the norms/standards

defined by the W3C, so it is very important. Some reasons for validating a web page

are:

● It helps to create web pages that are cross-browser, cross-platform compatible.

Most likely they will be compatible with the future version of web browsers and

web standards.

● Standards compliant web pages increase the search engine spiders and crawlers

visibility, as a result your web pages will more likely be appear in search results.

● It will reduce unexpected errors and make your web pages more accessible to

the visitor.

https://validator.w3.org/

83 | Page

2.3. HTML5 Features

In this subchapter, the features of the fifth (and last) major HTML version recommended

by the W3C will be explained.

HTML5 New Input Types

HTML5 introduces several new <input> types like email, date, time, color, range, and

so on, with the goal of improving the user experience and to make the forms more

interactive. Nevertheless, if a browser failed to recognize these new input types, it will

consider them a normal text box.

The following are some new input types:

● color

● date

● datetime-local

● email

● month

● number

● range

● search

● tel

● time

● url

● week

Regarding the color input, it allows to select a colour from a colour picker and gives

information about the colour value in hexadecimal format (e.g., #000000, which is black,

the default colour if the user does not specify a value), as verified in Figure 73 below.

84 | Page

It should be noted that the color input is supported in all major modern web browsers

(Firefox, Chrome, Opera, Safari (12.1+), Edge (14+)), but it is not supported by the

Microsoft Internet Explorer and older versions of Apple Safari browsers.

Figure 73 – Picking a colour using the color input (Source:

https://www.tutorialrepublic.com/codelab.php?topic=html5&file=color-input-type)

Concerning the date input type, it allows the user to select a date from a drop-down

calendar, in which he/she may choose the year, month and day (but not time). This

feature is also supported by most browsers, except for Internet Explorer and Safari.

Figure 74 – The date input type (Source: https://www.tutorialrepublic.com/codelab.php?topic=html5&file=color-

input-type)

https://www.tutorialrepublic.com/codelab.php?topic=html5&file=color-input-type
https://www.tutorialrepublic.com/codelab.php?topic=html5&file=color-input-type
https://www.tutorialrepublic.com/codelab.php?topic=html5&file=color-input-type

85 | Page

The datetime-local input type makes available to the user to select both local date and

time, including the year, month, and day including the time in hours and minutes. This

input is supported by Safari, Firefox and IE, but not by Chrome, Edge and Opera.

Figure 75 – The datetime-local input type (Source:

https://www.tutorialrepublic.com/codelab.php?topic=html5&file=color-input-type)

To allow the user to enter his/her e-mail address, email is the preferred input type. It is

quite like a standard text input type, but if it is applied in combination with the required

attribute, browsers may search for the patterns to guarantee a properly formatted e-mail

address should be entered. The email input field can be styled for different validation

states, when a value is entered using the :valid, :invalid or :required pseudo-classes.

This input type is supported by all major browsers.

Figure 76 – The email input type (Source: https://www.tutorialrepublic.com/html-tutorial/html5-new-input-

types.php)

https://www.tutorialrepublic.com/codelab.php?topic=html5&file=color-input-type
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php

86 | Page

In what regards month Input type, this is a very similar feature to the previous time ones

since it allows to select a month and year from a drop-down calendar (being ‘YYYY’ the

year and ‘’MM’’ the month. It should be noted that this is not supported by Firefox, Safari

and Internet Explorer. Only Chrome, Edge and Opera browsers support it.

Figure 77 – The month input type (Source: https://www.tutorialrepublic.com/html-tutorial/html5-new-input-

types.php)

Concerning the number input type, it is used for inserting a numerical value. The web

designer can also limit the user to enter only acceptable values. For this to happen, the

additional attributes min, max, and step should be used. This feature is supported by all

major web browsers.

Figure 78 – The number input type (Source: https://www.tutorialrepublic.com/html-tutorial/html5-new-input-

types.php)

https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php

87 | Page

The range input type can be applied for registering a numerical value within a specific

range. It works very similar to number input above, although it presents an easier way

for inserting a number. This input type is supported by all major web browsers.

Figure 79 – The range input type (Source: https://www.tutorialrepublic.com/html-tutorial/html5-new-input-

types.php)

The search input type is suitable for generating search input fields. It must be stated

that, in some browsers (i.e., Chrome and Safari), as soon as the user begins to type in

the search box, a tiny cross emerges on the right side of the field, which can be useful

for clearing the entire search field. It is supported by all major browsers.

Figure 80 – The search input type (Source: https://www.tutorialrepublic.com/html-tutorial/html5-new-input-

types.php)

Concerning the tel input type, it is especially useful for inserting a phone number. As

browsers do not support tel input validation by default, the placeholder attribute can be

used to help users inserting the correct format for their phone number or indicate a

https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php

88 | Page

regular expression to validate the user’s input by applying the pattern attribute. This

feature is not supported by any browser, as phone numbers vary a lot worldwide.

Figure 81 – The tel input type (Source: https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php)

Regarding the time input type, it can be used for entering any given time (hours and

minutes), and the browser can use both hour formats (12 or 24-hour) for inserting times,

depending on the region. This input is not supported by IE and Safari browsers.

Figure 82 – The time input type (Source: https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php)

Concerning the url input type, it can be used for inserting URL’s or web addresses. The

multiple attribute can be used for inserting more than one URL. Moreover, if required

attribute is restricted, the browser will automatically perform validation to ensure that

only text that meets the standard format for URLs goes into the input box. All major

browsers support this input type.

https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php

89 | Page

Figure 83 – The url input type (Source: https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php)

Finally, the week input type enables the user to choose a week and year from a drop-

down calendar. This feature is not supported by Firefox, Safari and IE, but it is currently

supported by Chrome, Edge and Opera browsers.

Figure 84 – The week input type (Source: https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php)

https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php

90 | Page

HTML5 Canvas

This subchapter will be essentially useful for learning how to draw graphics using the

HTML5 canvas element. It was originally created by Apple for the Mac OS dashboard

widgets and to enable graphics in Safari. Moreover, it was adopted by other browsers,

like Firefox, Google Chrome and Opera.

By default, the <canvas> element has 300px of width and 150px of height without any

border and content. Nevertheless, custom width and height can be specified using the

CSS height and width feature.

The canvas is a two-dimensional four-sided area. The coordinates of the top-left corner

of the canvas are (0, 0), identified as origin, and the coordinates of the bottom-right

corner are (canvas width, canvas height), as can be seen using the interactive tool

available here.

To draw basic paths and shapes utilizing the recently introduced HTML5 canvas

element and JavaScript, it will be useful to take a look at several templates.

Firstly, the base template for drawing paths and shapes onto the 2D HTML5 canvas:

Figure 85 – The base template for drawing paths and shapes onto the 2D HTML5 canvas (Source:

https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php)

https://www.tutorialrepublic.com/html-tutorial/html5-canvas.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php

91 | Page

All the lines except those from 7 to 11 are quite straight forward and easy to interpret.

The anonymous function affixed to the window.onload event will execute when the page

loads. As soon as the page is loaded, one can access the canvas element with

document.getElementById() method. Later, a 2D canvas context is defined by passing

2d into the getContext() method of the canvas object.

The initial step to draw on canvas is a straight line. The most important procedures

used for this purpose are moveTo(), lineTo() and the stroke(). The moveTo() method

identifies the position of drawing cursor onto the canvas, while the lineTo() method used

to define the coordinates of the line's end point, and finally the stroke() method is used

to make the line visible:

Figure 86 – The moveTo(), lineTo() and the stroke() procedures (Source: https://www.tutorialrepublic.com/html-

tutorial/html5-new-input-types.php)

What about drawing an arc? It can be obtained by simply using the arc() method, which

syntax is:

context.arc(centerX, centerY, radius, startingAngle, endingAngle,
counterclockwise);

In the example above, an arc was drawn on canvas by inserting a JavaScript code:

https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php

92 | Page

Figure 87 – Drawing an arc using a JS code (Source: https://www.tutorialrepublic.com/html-tutorial/html5-new-

input-types.php)

To draw a rectangle and square shapes, the rect() method is the way to go. It entails

four parameters: x, y positions of the rectangle and its width and height. The basic

syntax of the rect() method is the following:

context.rect(x, y, width, height);

To draw it using a JS code:

Figure 88 – Drawing a rectangle using a JS code (Source: https://www.tutorialrepublic.com/html-tutorial/html5-

new-input-types.php)

https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php

93 | Page

In opposite to the rect() method, there is no specific procedure for drawing a circle.

However, the result can be obtained by creating a fully enclosed arc, by using the arc()

method. The synthax for drawing a complete circle using the arc() method is the

following:

context.arc(centerX, centerY, radius, 0, 2 * Math.PI, false);

Figure 89 – Drawing a circle on HTML5 canvas (Source: https://www.tutorialrepublic.com/html-tutorial/html5-new-

input-types.php)

In regard to styles and colours on stroke, the default colour of the stroke is black,

being its thickness 1 pixel. However, these attributes can be changed using the

strokeStyle and lineWidth properties, as follows on Figure 86.

In Figure 87, it is possible to set the cap style for the lines by using the lineCap property,

with three styles available: butt, round, and square.

One can also fill colour inside the canvas shapes by using the fillStyle() approach. Figure

88 shows how to fill up a solid colour within a rectangle shape. While designing the

shapes on canvas, it is suggested to use the fill() method before the stroke() method to

render the stroke appropriately.

https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php

94 | Page

Figure 90 – Setting the styles and colours on stroke using strokeStyle and lineWidth properties (Source:

https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php)

Figure 91 – Setting the cap style for the lines using the lineCap property (Source:

https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php)

Figure 92 – Filing colour inside the canvas shapes by using the fillStyle() approach (Source:

https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php)

https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php

95 | Page

It is also possible to fill gradient colour (a smooth visual transition from one colour to

another) within the canvas shapes. There are two types of gradients here: linear and

radial.

The basic syntax for creating a linear gradient is:

var grd = context.createLinearGradient(startX, startY, endX, endY);

The basic syntax for creating a radial gradient is:

var grd = context.createRadialGradient(startX, startY, startRadius,
endX, endY, endRadius);

Figure 89 shows how to fill a linear gradient colour inside a rectangle using the

createLinearGradient() method:

Figure 93 – Filing a linear gradient colour inside a rectangle using the createLinearGradient() method (Source:

https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php)

https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php

96 | Page

Figure 90 demonstrates how to fill a radial gradient colour inside a circle through the

createRadialGradient() method:

Figure 94 – Filling a radial gradient colour inside a circle through the createRadialGradient() method (Source:

https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php)

It is also possible to draw text on canvas (containing Unicode characters only), as well

as adding it colour and alignment, and even apply stroke on text using the strokeText()

method, which will colour the perimeter of the text instead of filling it. Nonetheless, if the

web designer intends to set both the fill and stroke on the text element, he/she can use

the fillText() and the strokeText() methods together. it is suggested to use the fillText()

method before the strokeText() method to render the stroke accurately.

https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php

97 | Page

Figure 95 – Drawing text on canvas (Source: https://www.tutorialrepublic.com/html-tutorial/html5-new-input-

types.php)

HTML5 SVG

This subchapter is expected to be clear on how to use HTML5 svg elements to draw

vector graphics on a web page. To do so, firstly it is important to define SVG.

SVG stands for Scalable Vector Graphics, and it is an XML-based image format that is

used to define two-dimensional vector-based graphics for the web. Distinct from raster

image (e.g. .jpg, .gif, .png, and other two-dimensional formats), a vector image can be

scaled up or down to any extent without losing the quality of the image. Vector images

are comprised of a series of shapes defined by math, while raster images are composed

of a fixed set of dots (pixels). Like other topics discussed along this chapter, SVG is also

a W3C recommendation.

An SVG image is built by using a sequence of statements that go along with the XML

schema, so, SVG images can be created and edited with a text editor like Notepad.

There are numerous advantages of using SVG images rather than other image formats,

as follows:

● They can be searched, indexed, scripted, and compressed.

● They can be created and modified using JavaScript in real time.

● They can be printed with high quality at any resolution.

https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php

98 | Page

● They can be animated using the built-in animation elements.

● They can contain hyperlinks to other documents.

SVG graphics can be embedded directly in a document by using the HTML5 <svg>

element (see Figure 96 below).

All the major modern web browsers (Chrome, Firefox, Safari, and Opera), as well as

Internet Explorer 9 and above are compatible with inline SVG rendering.

Figure 96 – Embedding SVG graphics directly by using the svg element (Source:

https://www.tutorialrepublic.com/html-tutorial/html5-svg.php)

Basic vector-based paths and shapes on the webpages can be drawn by utilizing the

HTML5 <svg> element.

The most basic path to work with SVG is to draw a straight line. For that to happen,

the SVG <line> element should be used. As can be seen in Figure 93, the attributes x1,

x2, y1 and y2 of the <line> element draw a line from (x1,y1) to (x2,y2).

https://www.tutorialrepublic.com/html-tutorial/html5-svg.php

99 | Page

Figure 97 – Drawing a straight line with SVG <line> element (Source: https://www.tutorialrepublic.com/html-

tutorial/html5-svg.php)

For drawing a rectangle and squares, the <rect> SVG element is the most appropriate

way. The attributes x and y of <rect> element specify the co-ordinates of the top-left

corner of the rectangle. The attributes width and height specify the width and height of

the shape.

Figure 98 – Drawing a rectangle with SVG <rect> element (Source: https://www.tutorialrepublic.com/html-

tutorial/html5-svg.php)

If a circle is the chosen shape, the SVG element <circle> is the most suitable. The

attributes cx and cy of the <circle> element specifies the co-ordinates of the center of

the circle and the attribute r identifies the radius of the circle. Still, if the attributes cx and

cy are absent or not specified, the center of the circle is set to (0,0).

https://www.tutorialrepublic.com/html-tutorial/html5-svg.php
https://www.tutorialrepublic.com/html-tutorial/html5-svg.php
https://www.tutorialrepublic.com/html-tutorial/html5-svg.php
https://www.tutorialrepublic.com/html-tutorial/html5-svg.php

100 | Page

Figure 99 – Drawing a circle with SVG <circle> element (Source: https://www.tutorialrepublic.com/html-

tutorial/html5-svg.php)

It is also possible to draw text with SVG. The text in SVG is rendered as a graphic so

the web designer can use all the graphic transformation to it, but it still performs as text,

so it can be selected and copied as text by the user. The attributes x and y of the <text>

element identify the location of the top-left corner in absolute terms although the

attributes dx and dy indicates the relative location.

Figure 100 – Drawing text with SVG <text> element (Source: https://www.tutorialrepublic.com/html-tutorial/html5-

svg.php)

In alternative, web designers may use the <tspan> element to resize or relocate the

span of text included within a <text> element. The text is included in separate tspans,

but inside the same text element can all be selected at the same moment — when

clicking and dragging to select the text. Yet, the text in separate text elements cannot

be picked at the same time.

https://www.tutorialrepublic.com/html-tutorial/html5-svg.php
https://www.tutorialrepublic.com/html-tutorial/html5-svg.php
https://www.tutorialrepublic.com/html-tutorial/html5-svg.php
https://www.tutorialrepublic.com/html-tutorial/html5-svg.php

101 | Page

Figure 101 – Drawing text with SVG <tspan> element (Source: https://www.tutorialrepublic.com/html-tutorial/html5-

svg.php)

Even though the new graphical elements <canvas> and <svg> have been introduced

by HTML 5 in order to create high-quality graphics on the web, they differ quite a lot.

In the table below, the differences between both are summarized, and this will help

learners on how to use them in an appropriate, effective way:

SVG Canvas

Vector based (composed of shapes) Raster based (composed of pixel)

Multiple graphical elements, which become

the part of the page's DOM tree

Single element similar to in behavior.

Canvas diagram can be saved to PNG or JPG

format

Modified through script and CSS Modified through script only

Good text rendering capabilities Poor text rendering capabilities

Give better performance with smaller number

of objects or larger surface, or both

Give better performance with larger number

of objects or smaller surface, or both

https://www.tutorialrepublic.com/html-tutorial/html5-svg.php
https://www.tutorialrepublic.com/html-tutorial/html5-svg.php
https://www.tutorialrepublic.com/html-reference/html-img-tag.php

102 | Page

SVG Canvas

Better scalability. Can be printed with high

quality at any resolution. Pixelation does not

occur

Poor scalability. Not suitable for printing on

higher resolution. Pixelation may occur

Figure 102 – The differences between SVG and canvas (Source: https://www.tutorialrepublic.com/html-

tutorial/html5-svg.php)

HTML 5 Audio

This subchapter is intended to explain how to embed audio in an HTML document.

As web browsers did not have a uniform standard for embedding media files as audio,

it was not an easy task to perform in the past. However, there are many ways to embed

sound in a webpage, from simply use a simple link to using the HTML5 <audio> element.

This element provides a standard way to insert audio in web pages. Since the audio

element is somewhat new, it runs in most of the modern web browsers.

There are many ways of inserting an audio into a HTML5 document. One of them is by

using the browser’s default group of controls, with one source defined by the src

attribute, as it can be verified in this code, in which it is possible to hear a group of birds

singing.

Another way can be achieved by using the <object> element, which is used for

embedding different types of media files. This example embeds an audio file into a web

page following the aforementioned method. It should be stated that

the <object> element is not supported broadly and it depends on the type of the object

that is being implanted. Other methods like HTML5 <audio> element or third-party

HTML5 audio players could be a better option in a lot of cases.

Finally, the <embed> element can also be another way of inserting media in an HTML

document, following this example. Even though the <embed> element is superbly

https://www.tutorialrepublic.com/html-tutorial/html5-svg.php
https://www.tutorialrepublic.com/html-tutorial/html5-svg.php
https://www.tutorialrepublic.com/codelab.php?topic=html5&file=audio-element
https://www.tutorialrepublic.com/codelab.php?topic=html5&file=insert-audio-using-object-element
https://www.tutorialrepublic.com/codelab.php?topic=html5&file=insert-audio-using-embed-element

103 | Page

supported in nowadays browsers and defined as standard in HTML5, the inserted audio

might not be played due to absence of browser support for that file format or

inaccessibility of plugins.

HTML5 Video

It is now time to learn how to embed video content into an HTML document.

Pretty much like sound, video contents were also difficult to insert into a web page, and

for the same reason (web browsers did not have a uniform standard for defining

embedded media files like video). In the next paragraphs, many ways of inserting these

contents will be explained.

The newly introduced <video> element works in most of the modern browsers. This

example explains how to simply insert a video into the HTML document, using the

browser default set of controls, with one source defined by the src attribute.

The <object> element is also used to embed different types of media files. Following

this example, one can understand how to embed a Flash video into a webpage (only

browsers/applications supporting Flash will be able to play it). It should be noted that

the <object> element is not supported extensively and depends a lot on the type of the

object embedded. Other methods could be a better choice in many cases as, for

instance, iPad and iPhone device cannot display Flash videos.

And what about embedding YouTube videos? That is actually the most simple and

common way of embedding video files in webpages nowadays. The web designer must

simply upload the video on YouTube and insert HTML code to display the video on

his/her webpage. Here is a step-by-step mini guide:

Step 1 – Upload a video on YouTube.

https://www.tutorialrepublic.com/codelab.php?topic=html5&file=video-element
https://www.tutorialrepublic.com/codelab.php?topic=html5&file=video-element
https://www.tutorialrepublic.com/codelab.php?topic=html5&file=insert-video-using-embed-element

104 | Page

Step 2 – After uploading a video on YouTube, the web designer should look for the

‘Share’ button, which is located below a video running on the platform’s video player,

just like as follows:

Figure 103 – ‘Share’ button on YouTube (Source: Author)

When clicking the ‘Share’ button, a share panel will open exhibiting some more options.

Now, the ‘Embed’ button should be clicked, as it will generate the HTML code to directly

embed the video into the web page. For that to happen, the web designer should copy

and paste that code into the HTML document.

Figure 104 – ‘Embed’ option on YouTube (Source: Author)

This code can be furtherly customized, and for that to happen the web designer just

needs to select the customization option given just below the embed-code input box.

The insertion of a YouTube video on a webpage is explained in this example.

https://www.tutorialrepublic.com/codelab.php?topic=html5&file=embed-youtube-video

105 | Page

HTML5 Web Storage

Ever wondered how to use HTML5 web storage feature to store data on user’s browser?

The following paragraphs will be useful for fully understanding this.

Firstly, it is important to understand the implications of ‘web storage’.

With web storage, web applications can store data locally within the user's browser.

Prior to HTML5, application data had to be stored in cookies, incorporated in every

server request. Web storage is more secure, and substantial amounts of data can be

stored locally, without impacting website performance. The information kept in the web

storage is not sent to the web server as opposite to the cookies where data is delivered

to the server with every request. Moreover, cookies only allow to store a small amount

of data (nearly 4KB), while the web storage permits to store up to 5MB.

There are two types of web storage:

● Local storage — makes use of the localStorage object to store data for the

entire website on a permanent basis. That being said, the stored local data will

be available on the next day, the next week, or the next year unless it is removed.

● Session storage — it uses the sessionStorage object to store data on

a temporary basis, for a single browser window or tab. The data vanishes when

session ends, for instance when the user shuts that browser window or tab.

As regards the local storage, each piece of data is collected in a key/value pair. The

key identifies the name of the information (i.e. 'first_name'), and the value is the value

related to the same key (i.e. ‘Peter’). The following JS code expresses the following:

● localStorage.setItem(key, value) stores the value associated with a key.

● localStorage.getItem(key) saves the value associated with the key.

https://www.tutorialrepublic.com/codelab.php?topic=html5&file=local-storage

106 | Page

It is also possible to remove a particular item from the storage, by passing the key name

to the removeItem() method, i.e. localStorage.removeItem("first_name").

However, if the web designer intends to remove the complete storage, he/she should

use the clear() method, i.e. localStorage.clear(). The clear() method simply clears all

key/value pairs from localStorage at once, so it must be used cautiously. The web

storage data will not be accessible between different browsers.

Finally, the sessionStorage object works similarly to localStorage, except that it stores

the data only for one session. The following example is quite explanatory on how this

works.

HTML5 Application Cache

During the subchapter, learners can get closer on how to create offline applications

using HTML5 caching feature.

It is well-known that most web-based application will not work if the web designer is

offline. However, HTML5 brings in an application cache mechanism that allows the

browser to automatically save the HTML file and all the other resources that requires to

display it properly on the local machine, that way the browser can still access the web

page and its resources without establishing a connection to the internet. This is

supported in all major modern web browsers (Firefox, Chrome, Opera, Safari, and

Internet Explorer 10 and above.

There are several advantages in using this feature:

● Offline browsing — Visitors can use the application even when they are not

online or there are unexpected interruptions in the network connection.

https://www.tutorialrepublic.com/codelab.php?topic=html5&file=session-storage

107 | Page

● Improve performance — Cached resources load directly from the user's

machine instead of the remote server so web pages load quicker and perform

better.

● Reduce HTTP request and server load — The browser will only have to

download the updated/changed resources from the remote server that reduce

the HTTP requests and saves valuable bandwidth as well as decrease the load

on the web server.

There are a few steps to go through in order to cache the files for offline use:

STEP 1 – Create a Cache Manifest file. This is a special text file that informs browsers

what files should they store (and not), and what files to replace. It always starts with the

words CACHE MANIFEST (always in uppercase).

Figure 105 below is an example of a manifest file:

Figure 105 – Example of a manifest file (Source: https://www.tutorialrepublic.com/html-tutorial/html5-application-

cache.php)

https://www.tutorialrepublic.com/html-tutorial/html5-application-cache.php
https://www.tutorialrepublic.com/html-tutorial/html5-application-cache.php

108 | Page

It is now time to explain the coding of Figure 98.

● Firstly, it is important to understand that manifest files can have three different

sections: CACHE, NETWORK, and FALLBACK.

● The files listed under the CACHE: section header (or right after the CACHE

MANIFEST line) are clearly cached after they are downloaded for the first time;

● Files under the NETWORK: section header are white-listed resources that are

never cached and are only available online. It means users cannot never access

login.php page when they're offline;

● The FALLBACK: section specifies alternative pages the browser should use in

case the connection to the server cannot be done. Each entry in this section lists

two URIs — first is the primary resource, the second is the fallback. For instance,

in Figure 98 case, offline.html page will be displayed if the user is offline. Also,

both URIs must be from the same origin as the manifest file.

● It should be noted that lines starting with ‘#’ (hash symbol) are comment lines.

Therefore, if an application cache is there, the browser loads the document and its

associated resources straight from the cache, without accessing the network. Then

browser checks to find out whether the manifest file has been updated on the server. If

it has been updated, the browser downloads the new version of the manifest and the

resources listed in it.

It is important to note that the manifest file itself should not be specified in the cache

manifest file. If so, it will be quite difficult to notify the browser that a new manifest is

available.

STEP 2 – Use the cache manifest file. After creating it, the web designer should upload

the cache manifest file on the web server — making sure the web server is configured

to serve the manifest files with the MIME type text/cache-manifest.

109 | Page

To make the cache manifest work, the web designer will need to enable it in the web

pages, by adding the manifest attribute to the root <html> element, as shown by Figure

106 below:

Figure 106 – Making the cache manifest work (Source: https://www.tutorialrepublic.com/html-tutorial/html5-

application-cache.php)

If the user is online, the result for this code will be the following:

Figure 107 – about_blank#blocked (Source: https://www.tutorialrepublic.com/html-tutorial/html5-application-

cache.php)

HTML5 Web Workers

This subtopic will be essentially useful for further learning on JS topics, as it will teach

how to use HTML5 web worker to run JS code in the background. So, learners must

come back if they experience any difficulties.

If one tries to perform intensive, time-consuming, and heavy calculations demanding

tasks with JavaScript, it probably will freeze up the webpages and will prevent users

from doing anything until the job is done. Why? Well, because JS code always runs in

https://www.tutorialrepublic.com/html-tutorial/html5-application-cache.php
https://www.tutorialrepublic.com/html-tutorial/html5-application-cache.php
https://www.tutorialrepublic.com/html-tutorial/html5-application-cache.php
https://www.tutorialrepublic.com/html-tutorial/html5-application-cache.php

110 | Page

the foreground. However, HTML5 has a new technology (‘web worker’) created to

perform background work apart from other user-interface scripts, without impacting the

performance of the page. Distinct from normal JS operations, web worker does not

interrupt the user and the web page stays responsive because they are running the

tasks in the background.

Web workers are specially useful for performing a time-consuming task. So, in the first,

example, a simple JS task that counts from zero to 100 000 will be created (name of the

file should be worker.js), as follows on Figure 101:

Figure 108 – Creating a JS task counting from 0 to 100 000 (Source: https://www.tutorialrepublic.com/html-

tutorial/html5-web-workers.php)

Note: For a better understanding, it is advisable to download the code from Fig. 108 and

follow every step of this chapter.

So, now that the web worker file has been created, it is time to start the web worker from

an HTML document that runs the code inside the file named "worker.js" in the

background and gradually shows the result on the web page. It should be noted that the

number in the right will always be growing until it reaches 100 000.

https://www.tutorialrepublic.com/html-tutorial/html5-web-workers.php
https://www.tutorialrepublic.com/html-tutorial/html5-web-workers.php

111 | Page

Figure 109 – Starting the web worker (Source: https://www.tutorialrepublic.com/html-tutorial/html5-web-

workers.php)

Now explaining what is going on the example from above, the statement var worker =

new Worker("worker.js"); creates a new web worker object, which is used to

communicate with the web worker. When the worker posts a message, it triggers the

onmessage event handler (line 14) that permits the code to receive messages from the

web worker. The event.data element comprises the message sent from the web worker.

For the record, the code that a worker runs is always stored in a separate JavaScript file

to prevent web developer from writing the web worker code that makes an attempt to

use global variables or directly open the elements on the web page.

It is also possible to put an end to a running worker in the middle of the operation,

following the example below:

https://www.tutorialrepublic.com/html-tutorial/html5-web-workers.php
https://www.tutorialrepublic.com/html-tutorial/html5-web-workers.php

112 | Page

Figure 110 – Stopping the running worker (Source: https://www.tutorialrepublic.com/html-tutorial/html5-web-

workers.php)

The example above shows how to start and stop worker from a web page by simply

clicking on HTML buttons.

HTML5 Server-Sent Events

This subchapter will be useful for understanding how to use the HTML5 server-sent

events feature to make a unidirectional and permanent connection between a web

page and a server.

HTML5 server-sent event is an innovative way for the web pages to communicate with

a web server. Nevertheless, there are some circumstances where web pages need a

longer-term connection to the web server, for example, on stock quotes on finance

websites where price updated automatically or game tickers running on various sports

websites. Such things are feasible with the HTML5 server-sent events, as it makes

available for a web page to hold an open connection to a web server, in a way that the

web server can send a new response mechanically at whatever time. At this point, there

is no need to reconnect and run the same server script from the beginning repeatedly.

https://www.tutorialrepublic.com/html-tutorial/html5-web-workers.php
https://www.tutorialrepublic.com/html-tutorial/html5-web-workers.php

113 | Page

For a better understanding of the aforementioned concepts, a PHP(1) file named

"server_time.php" and type the following script into it. This file will merely report the

present time of the web server's built-in clock in regular intervals:

Figure 111 – server_time.php example (Source https://www.tutorialrepublic.com/html-tutorial/html5-server-sent-

events.php)

(1) A PHP file is a plain-text file which contains code written in the PHP programming language. Since PHP is a server-side

(back-end) scripting language, the code written on it is executed on the server. In fact, a PHP file may contain plain text,
HTML tags, or code as per the PHP syntax. PHP is often used to develop web applications that are processed by a PHP
engine on the web server.

The first two line of the PHP script (Fig. 111) sets two crucial headers. Number one, it

sets the MIME type to text/event-stream, which is needed by the server-side event

standard. The second line informs the web server to turn off caching or else the output

of the script may be cached.

Every message send through HTML5 server-sent events must start with the text data:

followed by the actual message text and the new line character sequence (\n\n).

And lastly, the PHP flush() function has been used to ensure that the data is sent

immediately, rather than buffered until the PHP code is complete.

Regarding on how to process messages in a web page, the EventSource object is

used to receive server-sent event messages. In the example below, learners will see

how a HTML document simply receives the current time reported by the web server and

displays it to the web page visitors. For a better understanding, an HTML document

named “demo_sse.htlm” will be created and furtherly placed in the same project

https://www.tutorialrepublic.com/html-tutorial/html5-server-sent-events.php
https://www.tutorialrepublic.com/html-tutorial/html5-server-sent-events.php

114 | Page

directory where “server_time.php” is located. The download of the following code can

be done in the source’s link available below.

Figure 112 – How to process messages in a web page (Source https://www.tutorialrepublic.com/html-tutorial/html5-

server-sent-events.php)

HTML 5 Geolocation

Through this subtopic, learners will get a few insights on how to use HTML5 geolocation

feature for detecting user’s location. This feature lets the programmer find out the

geographic coordinates (latitude and longitude) of the website visitor’s current location.

It is especially useful for providing the best browsing experience for the visitor, since, for

instance, this tool can show search results that are physically close to the user’s

location.

Receiving the position information of the website visitor using the HTML5 geolocation

API is not difficult. It exploits the three methods that are packed into the

navigator.geolocation object — getCurrentPosition(), watchPosition() and clearWatch().

https://www.tutorialrepublic.com/html-tutorial/html5-server-sent-events.php
https://www.tutorialrepublic.com/html-tutorial/html5-server-sent-events.php

115 | Page

After the user agrees to let the browser tell the web server about his/her position (web

browsers will not share the visitor location with a webpage unless the user agrees to do

so), the geolocation process should occur as follows:

 Figure 113 – The Geolocation feature process (Source: https://www.tutorialrepublic.com/html-tutorial/html5-

geolocation.php)

In case a user does not intend to share his/her location data with the website, the

programmer can supply two functions when calling the getCurrentLocation() function.

First function is called in case geolocation attempt is successful, whereas the second is

called if the geolocation attempt fails.

https://www.tutorialrepublic.com/html-tutorial/html5-geolocation.php
https://www.tutorialrepublic.com/html-tutorial/html5-geolocation.php

116 | Page

Figure 114 – Applying two functions to the getCurrentLocation() function (Source:

https://www.tutorialrepublic.com/html-tutorial/html5-geolocation.php)

There are many interesting functions to explore with geolocation data, as showing the

user’s location on Google Maps. Based on the latitude and longitude data retrieved

through the HTML5 geolocation feature, this example shows the reader’s current

location. This simply shows a static image showing user’s location, although an

interactive Google maps with dragging, zoom in/out and other features, as this example

shows.

All the aforementioned examples have been based on the getCurrentPosition() method.

Nevertheless, the geolocation function has another technique –watchPosition() that

allows to track the visitor's movement by returning the updated position as the location

changes. watchPosition() has the same input parameters as getCurrentPosition(). Yet,

watchPosition() may activate the success function multiple times — when it gets the

https://www.tutorialrepublic.com/html-tutorial/html5-geolocation.php
https://www.tutorialrepublic.com/codelab.php?topic=html5&file=show-geolocation-on-google-map-image
https://www.tutorialrepublic.com/codelab.php?topic=html5&file=show-location-on-google-map
https://www.tutorialrepublic.com/codelab.php?topic=html5&file=show-location-on-google-map

117 | Page

location for the first time, and again, every time it spots a new position, as this example

suggests.

HTML5 Drag and Drop

It is a common procedure in the online daily routine to drag and drop an element to

another location in a website. The HTML5 Drag and Drop feature allows to do so, and

any element can be dragged and dropped. This w3schools example sets a simple drag

and drop example learners may try to get more familiar with this concept. Even though

the code seems difficult to understand, it is quite simple and logic:

● Firstly, to make an element draggable, the draggable attribute must be true:

● Then, it should be specified what should happen once the element is dragged. In

the w3schools example given above, the ondragstart attribute calls a function

(drag (event)) that specifies what data will be dragged. The

dataTransfer.setData() process sets the data type and the value of the dragged

data:

function drag(ev) {

 ev.dataTransfer.setData("text",ev.target.id);

}

In this example, the data type is “text”, being the value the id of the draggable

element (“drag1”).

● The ondragover event stipulates where the dragged data can be dropped. By

default, data/elements are unable to be dropped in other elements. To permit a

drop, the web designer should prevent the default handling of the element, by

calling the event.preventDefault() technique for the ondragover event:

event.preventDefault()

● As soon as the dragged data is dropped, a drop event happens. In the example

given previously, the ondrop attribute calls a function, drop(event):

https://www.tutorialrepublic.com/codelab.php?topic=html5&file=get-current-geolocation-data
https://www.tutorialrepublic.com/codelab.php?topic=html5&file=get-current-geolocation-data
https://www.w3schools.com/html/tryit.asp?filename=tryhtml5_draganddrop

118 | Page

function drop(ev) {

 ev.preventDefault();

 var data=ev.dataTransfer.getData("text");

 ev.target.appendChild(document.getElementById(data));

}

✓ Call preventDefault() to prevent the browser default handling of the data (default

is open as a link on drop);

✓ The programmer gets the dragged data with the dataTransfer.getData()

technique. This technique will return any data that was set to the same type in

the setData() technique;

✓ The dragged data is the id of the dragged element ("drag1")

✓ The programmer should also attach the dragged element into the drop element.

119 | Page

2.4. HTML5 References

For a detailed, comprehensive list of elements concerning HTML5 Tags/Elements,

HTML5 Global Attributes, HTML5 Event Attributes, HTML5 Language Codes,

HTML5 Character Entities, HTTP Status Codes, HTML5 Color Picker, and other

useful references, learners should refer to the following link (HTML5 References

section).

about:blank

120 | Page

3. CSS –
Cascading
Style
Sheets

121 | Page

Topic Information

Topic:

3. CSS

Prerequisites:

Basic computer literacy, basic software installed, basic knowledge of working with files,

and HTML basics (study Introduction to HTML.)

Workload:

10 hours.

Description:

Cascading Style Sheets (CSS) is a stylesheet language used to describe the

presentation of a document written in HTML or XML (including XML dialects such as

SVG, MathML or XHTML). CSS describes how elements should be rendered on screen,

on paper, in speech, or on other media.

Learning outcomes:

Learners will get knowledge on how to define CSS, use basic CSS syntax, set up web

pages with CSS, use CSS for styling text, font, and properties, use CSS for styling page

backgrounds, style lists in CSS, use CSS classes and IDs, use borders and height and

width CSS properties, use CSS pseudo elements, position elements with CSS and

validate CSS and HTML.

Material required:

• Computer or laptop

• Internet connection

• Text editor (online or offline): Sublime Text/Brackets/W3Schools online editor

https://www.sublimetext.com/
https://brackets.io/
https://www.w3schools.com/tryit/default.asp

122 | Page

Lesson Scenario:

The total time for this topic is 10 hours, and it will be up to the trainer/coach to decide

how much time to dedicate to teaching each subtopic. To make the most of all the time

available, we propose the use of the training materials produced by the project (PPT

presentations), which were designed with an effective use of time in mind. These

presentations are composed of the following elements:

• Development of the subtopic and main ideas to retain;

• Proposed Activities/Exercises.

That said, if the trainer/coach follows the logical sequence of the PPTs, he/she will

certainly be able to complete the session within the stipulated time limit. These

presentations can also be made available to learners for individual study.

Subtopics:

• 3.1. CSS Intro

• 3.2. CSS Advanced

• 3.3. CSS Responsive Web Design

• 3.4. CSS Grid

• 3.5. CSS SASS

Additional resources:

• CSS tutorial: w3schools

• Online Course on HTML and CSS: CodeAcademy

https://www.w3schools.com/css/default.asp
https://www.codecademy.com/catalog/language/html-css

123 | Page

3.1. CSS Intro

What is CSS?

Cascading Style Sheets, fondly referred to as CSS, is a simple design language

intended to simplify the process of making web pages presentable.

CSS handles the look and feel part of a web page. Using CSS, you can control the

colour of the text, the style of fonts, the spacing between paragraphs, how columns

are sized and laid out, what background images or colours are used, as well as a

variety of other effects.

CSS is easy to learn and understand but it provides a powerful control over the

presentation of an HTML document. Most commonly, CSS is combined with the

markup languages HTML or XHTML.

Advantages of CSS

• CSS saves time - You can write CSS once and then reuse the same sheet in

multiple HTML pages. You can define a style for each HTML element and apply it

to as many web pages as you want.

• Pages load faster - If you are using CSS, you do not need to write HTML tag

attributes every time. Just write one CSS rule of a tag and apply it to all the

occurrences of that tag. So, less code means faster download times.

• Easy maintenance - To make a global change, simply change the style, and all

the elements in all the web pages will be updated automatically.

• Superior styles to HTML - CSS has a much wider array of attributes than HTML,

so you can give a far better look to your HTML page in comparison to HTML

attributes.

• Multiple Device Compatibility - Style sheets allow content to be optimized for

more than one type of device. By using the same HTML document, different

124 | Page

versions of a website can be presented for handheld devices such as PDAs and

cellphones or for printing.

• Global web standards – Now HTML attributes are being deprecated and it is

being recommended to use CSS. So, it is a good idea to start using CSS in all the

HTML pages to make them compatible with future browsers.

Who Creates and Maintains CSS?

CSS is created and maintained through a group of people within the W3C called the

CSS Working Group. The CSS Working Group creates documents called

specifications. When a specification has been discussed and officially ratified by the

W3C members, it becomes a recommendation.

These ratified specifications are called recommendations because the W3C has no

control over the actual implementation of the language. Independent companies and

organizations create that software.

NOTE: The World Wide Web Consortium or W3C is a group that makes

recommendations about how the Internet works and how it should evolve.

CSS Versions

CSS was originally released in 1996 and consists of properties for adding font

properties such as typeface and emphasis color of text, backgrounds, and other

elements. CSS2 was released in 1998 with added styles for other media types so that

it can be used for page layout designing. CSS3 was released in 1999 and

presentation-style properties were added in it that allows you to build a presentation

from documents.

125 | Page

CSS Syntax

A CSS comprises of style rules that are interpreted by the browser and then applied

to the corresponding elements in your document. A style rule is made of three parts:

• Selector: A selector is an HTML tag at which a style will be applied. This

could be any tag like <h1> or <table> etc.

• Property: A property is a type of attribute of HTML tag. Put simply, all the

HTML attributes are converted into CSS properties. They could be color,

border, etc.

• Value: Values are assigned to properties. For example, color property can

have the value either red or #F1F1F1 etc.

 CSS Selectors

CSS selectors are used to "find" (or select) the HTML elements you want to style.

We can divide CSS selectors into five categories:

• Simple selectors (select elements based on name, id, class)

• Combinator selectors (select elements based on a specific relationship between

them)

• Pseudo-class selectors (select elements based on a certain state)

• Pseudo-elements selectors (select and style a part of an element)

• Attribute selectors (select elements based on an attribute or attribute value)

The CSS element Selector

The element selector selects HTML elements based on the element name.

126 | Page

Figure 1 – The CSS element selector (Source: https://www.w3schools.com/css/css_selectors.asp)

The CSS ID Selector

The id selector uses the id attribute of an HTML element to select a specific element.

The id of an element is unique within a page, so the id selector is used to select one

unique element!

To select an element with a specific id, write a hash (#) character, followed by the id

of the element.

Figure 2 – The CSS ID Selector (Source: https://www.w3schools.com/css/css_selectors.asp)

The CSS class Selector

The class selector selects HTML elements with a specific class attribute.

To select elements with a specific class, write a period (.) character, followed by the

class name.

Figure 3 – The CSS class Selector (Source: https://www.w3schools.com/css/css_selectors.asp)

https://www.w3schools.com/css/css_selectors.asp
https://www.w3schools.com/css/css_selectors.asp
https://www.w3schools.com/css/css_selectors.asp

127 | Page

The CSS universal Selector

The universal selector (*) selects all HTML elements on the page.

Figure 4 – The CSS universal Selector (Source: https://www.w3schools.com/css/css_selectors.asp)

Grouping selectors

You can apply a style to many selectors if you like. Just separate the selectors with a

comma, as given in the following example:

Figure 5 – Grouping Selectors (Source: https://www.w3schools.com/css/css_selectors.asp)

CSS Comments

• Comments are used to explain the code and may help when you edit the source

code at a later date.

• Comments are ignored by browsers.

A CSS comment starts with /* and ends with */

https://www.w3schools.com/css/css_selectors.asp
https://www.w3schools.com/css/css_selectors.asp

128 | Page

Figure 6 – CSS comments (Source: https://www.w3schools.com/css/css_comments.asp)

CSS Colours

Colours in CSS can be specified by the following methods:

• Hexadecimal colors

• Hexadecimal colors with transparency

• RGB colours

• RGBA colours

• HSL colours

• HSLA colours

• Predefined/Cross-browser color names

• With the current color keyword

Hexadecimal Colours

A hexadecimal colour is specified with: #RRGGBB, where the RR (red), GG (green)

and BB (blue) hexadecimal integers specify the components of the colour. All values

must be between 00 and FF.

For example, the #0000ff value is rendered as blue, because the blue component is

set to its highest value (ff) and the others are set to 00.

https://www.w3schools.com/css/css_comments.asp

129 | Page

Figure 7 – Hex Colours (Source: https://www.w3schools.com/css/css_colors.asp)

Hexadecimal Colours With Transparency

A hexadecimal colour is specified with: #RRGGBB. To add transparency, add two

additional digits between 00 and FF.

Figure 8 – Hex Colors with transparency (Source: https://www.w3schools.com/css/css_colors.asp)

https://www.w3schools.com/css/css_colors.asp
https://www.w3schools.com/css/css_colors.asp

130 | Page

RGB Colours

An RGB colour value is specified with the rgb() function, which has the following

syntax:

rgb(red, green, blue)

Each parameter (red, green, and blue) defines the intensity of the colour and can be

an integer between 0 and 255 or a percentage value (from 0% to 100%).

For example, the rgb(0,0,255) value is rendered as blue, because the blue parameter

is set to its highest value (255) and the others are set to 0.

Also, the following values define equal colour: rgb(0,0,255) and rgb(0%,0%,100%).

Figure 9 – RGB Colors (Source: https://www.w3schools.com/css/css_colors.asp)

RGBA Colours

RGBA colour values are an extension of RGB colour values with an alpha channel -

which specifies the opacity of the object.

An RGBA color is specified with the rgba() function, which has the following syntax:

rgba(red, green, blue, alpha)

https://www.w3schools.com/cssref/func_rgb.asp
https://www.w3schools.com/css/css_colors.asp
https://www.w3schools.com/cssref/func_rgba.asp

131 | Page

The alpha parameter is a number between 0.0 (fully transparent) and 1.0 (fully

opaque).

Figure 10 – RGB Colors with opacity (Source: https://www.w3schools.com/css/css_colors.asp)

HSL Colours

HSL stands for hue, saturation, and lightness - and represents a cylindrical-

coordinate representation of colours.

An HSL color value is specified with the hsl() function, which has the following syntax:

hsl(hue, saturation, lightness)

Hue is a degree on the color wheel (from 0 to 360) - 0 (or 360) is red, 120 is green,

240 is blue. Saturation is a percentage value; 0% means a shade of gray and 100%

is the full color. Lightness is also a percentage; 0% is black, 100% is white.

https://www.w3schools.com/css/css_colors.asp
https://www.w3schools.com/cssref/func_hsl.asp

132 | Page

Figure 11 – HSL Colors (Source: https://www.w3schools.com/css/css_colors.asp)

HSLA Colors

HSLA color values are an extension of HSL color values with an alpha channel -

which specifies the opacity of the object.

An HSLA color value is specified with the hsla() function, which has the following

syntax:

hsla(hue, saturation, lightness, alpha)

The alpha parameter is a number between 0.0 (fully transparent) and 1.0 (fully

opaque).

https://www.w3schools.com/css/css_colors.asp
https://www.w3schools.com/cssref/func_hsl.asp

133 | Page

Figure 12 – HSL Colors with opacity (Source: https://www.w3schools.com/css/css_colors.asp)

Predefined/Cross-browser Color Names

140 color names are predefined in the HTML and CSS color specification.

For example: blue, red, coral, brown, etc:

Figure 13 – Cross-browser Colors (Source: https://www.w3schools.com/css/css_colors.asp)

The currentcolor Keyword

The currentcolor keyword refers to the value of the color property of an element.

https://www.w3schools.com/css/css_colors.asp
https://www.w3schools.com/css/css_colors.asp

134 | Page

Figure 14 – The currentcolor keyword (Source: https://www.w3schools.com/colors/colors_currentcolor.asp)

CSS Backgrounds

• The CSS background properties are used to add background effects for elements.

• Some background properties:

Figure 15 – Background (Source: https://www.w3schools.com/css/css_background.asp)

CSS background-color

The background-color property specifies the background color of an element.

https://www.w3schools.com/colors/colors_currentcolor.asp
https://www.w3schools.com/css/css_background.asp

135 | Page

Figure 16 – Background color (Source:https://www.w3schools.com/css/css_background.asp)

CSS background-image

The background-image property specifies an image to use as the background of an

element.

By default, the image is repeated so it covers the entire element.

Figure 17 – Background image (Source: https://www.w3schools.com/css/css_background.asp)

https://www.w3schools.com/css/css_background.asp
https://www.w3schools.com/css/css_background.asp

136 | Page

CSS background-repeat

By default, the background-image property repeats an image both horizontally and

vertically.

Some images should be repeated only horizontally or vertically, or they will look

strange.

CSS background-attachment

The background-attachment property specifies whether the background image

should scroll or be fixed.

Figure 18 – Background-attachement (Source:

https://www.w3schools.com/css/css_background_attachment.asp)

https://www.w3schools.com/css/css_background_attachment.asp

137 | Page

Figure 19 – Background-attachement (Source:

https://www.w3schools.com/css/css_background_attachment.asp)

CSS background - Shorthand property

To shorten the code, it is also possible to specify all the background properties in one

single property. This is called a shorthand property.

Instead of writing:

Figure 20 – Background shorthand property

(Source:https://www.w3schools.com/css/css_background_shorthand.asp)

https://www.w3schools.com/css/css_background_attachment.asp
https://www.w3schools.com/css/css_background_shorthand.asp

138 | Page

You can use the shorthand property background:

Figure 21 – Background shorthand property

(Source:https://www.w3schools.com/css/css_background_shorthand.asp)

CSS Border

The CSS border properties allow you to specify the style, width, and color of an

element's border.

Figure 22 – Border (Source: https://www.w3schools.com/css/css_border.asp)

https://www.w3schools.com/css/css_background_shorthand.asp
https://www.w3schools.com/css/css_border.asp

139 | Page

CSS Margins

Margins are used to create space around elements, outside of any defined borders.

Figure 23 – Margin (Source:https://www.w3schools.com/css/css_margin.asp)

With CSS, you have full control over the margins. There are properties for setting the

margin for each side of an element (top, right, bottom, and left).

Figure 24 – Margin (Source:https://www.w3schools.com/css/css_margin.asp)

https://www.w3schools.com/css/css_margin.asp
https://www.w3schools.com/css/css_margin.asp

140 | Page

CSS Padding

Padding is used to create space around an element's content, inside of any defined

borders.

Figure 25 – Padding (Source:https://www.w3schools.com/css/css_padding.asp)

With CSS, you have full control over the padding. There are properties for setting

the padding for each side of an element (top, right, bottom, and left).

Figure 26 – Padding (Source:https://www.w3schools.com/css/css_padding.asp)

https://www.w3schools.com/css/css_padding.asp
https://www.w3schools.com/css/css_padding.asp

141 | Page

CSS height and width

The height and width properties are used to set the height and width of an element.

The height and width properties do not include padding, borders, or margins. It sets

the height/width of the area inside the padding, border, and margin of the element.

The height and width properties may have the following values:

• auto - This is default. The browser calculates the height and width

• length - Defines the height/width in px, cm etc.

• % - Defines the height/width in percent of the containing block

• initial - Sets the height/width to its default value

• inherit - The height/width will be inherited from its parent value

Figure 27 – Height and width (Source: https://www.w3schools.com/css/css_dimension.asp)

https://www.w3schools.com/css/css_dimension.asp

142 | Page

The CSS Box Model

In CSS, the term "box model" is used when talking about design and layout.

The CSS box model is essentially a box that wraps around every HTML element. It

consists of: margins, borders, padding, and the actual content. The image below

illustrates the box model:

Figure 28 – Box model (Source: https://www.w3schools.com/css/css_boxmodel.asp)

Explanation of the different parts:

• Content - The content of the box, where text and images appear

• Padding - Clears an area around the content. The padding is transparent

• Border - A border that goes around the padding and content

• Margin - Clears an area outside the border. The margin is transparent

The box model allows us to add a border around elements, and to define space

between elements.

CSS Outline
An outline is a line that is drawn around elements, OUTSIDE the borders, to make

the element "stand out".

https://www.w3schools.com/css/css_boxmodel.asp

143 | Page

Figure 29 – CSS Outline (Source: https://www.w3schools.com/css/css_outline.asp)

CSS Text

CSS has a lot of properties for formatting text.

Figure 30 – CSS Text (Source: https://www.w3schools.com/css/css_text.asp)

• Text Color

• Text Alignment

• Text Decoration

• Text Transformation

• Text Spacing

• Text Shadow

CSS Fonts

• The right font can create a strong identity for your brand.

• Using a font that is easy to read is important. The font adds value to your text. It is

also important to choose the correct color and text size for the font.

https://www.w3schools.com/css/css_outline.asp
https://www.w3schools.com/css/css_text.asp

144 | Page

Figure 31 – CSS Fonts (Source: https://www.w3schools.com/css/css_font.asp)

CSS Icons

• The simplest way to add an icon to your HTML page, is with an icon library, such

as Font Awesome.

• Add the name of the specified icon class to any inline HTML element (like <i> or

).

• All the icons in the icon libraries below, are scalable vectors that can be customized

with CSS.

Figure 32 – CSS Icons (Source: https://www.w3schools.com/css/css_icons.asp)

https://www.w3schools.com/css/css_font.asp
https://www.w3schools.com/css/css_icons.asp

145 | Page

CSS Links

Links can be styled with any CSS property (e.g. color, font-family, background, etc,).

Figure 33 – Links (Source: https://www.w3schools.com/css/css_link.asp)

In addition, links can be styled differently depending on what state they are in.

The four links states are:

• a:link - a normal, unvisited link

• a:visited - a link the user has visited

• a:hover - a link when the user mouses over it

• a:active - a link the moment it is clicked.

CSS Lists

The CSS list properties allow you to:

• Set different list item markers for ordered lists

• Set different list item markers for unordered lists

• Set an image as the list item marker

• Add background colors to lists and list items

https://www.w3schools.com/css/css_link.asp

146 | Page

Figure 34 – Lists (Source: https://www.w3schools.com/css/css_list.asp)

CSS Display

• The display property specifies if/how an element is displayed.

• Every HTML element has a default display value depending on what type of

element it is. The default display value for most elements is block or inline.

Figure 35 – Display (Source: https://www.w3schools.com/css/css_display_visibility.asp)

https://www.w3schools.com/css/css_list.asp
https://www.w3schools.com/css/css_display_visibility.asp

147 | Page

CSS Tables

The look of an HTML table can be greatly improved with CSS:

Figure 36 – Tables (Source: https://www.w3schools.com/css/css_table.asp)

CSS Max-width

• The problem with the <div> above occurs when the browser window is smaller

than the width of the element. The browser then adds a horizontal scrollbar to the

page

• Using max-width instead, in this situation, will improve the browser's handling of

small windows. This is important when making a site usable on small devices.

https://www.w3schools.com/css/css_table.asp

148 | Page

Figure 37 – Max Width (Source: https://www.w3schools.com/css/css_max-width.asp)

CSS Position

• The position property specifies the type of positioning method used for an

element

• There are five different position values:

• static

• relative

• fixed

• absolute

• sticky

CSS Z-index

• The z-index property specifies the stack order of an element (which element should

be placed in front of, or behind, the others).

• An element can have a positive or negative stack order:

https://www.w3schools.com/css/css_max-width.asp

149 | Page

Figure 38 – Z-index (Source: https://www.w3schools.com/css/css_z-index.asp)

CSS Overflow

• The overflow property specifies whether to clip the content or to add scrollbars

when the content of an element is too big to fit in the specified area.

• The overflow property has the following values:

• visible

Figure 39 – Overflow (Source: https://www.w3schools.com/css/css_overflow.asp)

• hidden

Figure 40 – Overflow (Source: https://www.w3schools.com/css/css_overflow.asp)

• Scroll

https://www.w3schools.com/css/css_z-index.asp
https://www.w3schools.com/css/css_overflow.asp
https://www.w3schools.com/css/css_overflow.asp

150 | Page

Figure 41 – Overflow (Source: https://www.w3schools.com/css/css_overflow.asp)

• auto

Figure 42 – Overflow (Source: https://www.w3schools.com/css/css_overflow.asp)

CSS Float

The float property is used for positioning and formatting content

Example - float: right

The following example specifies that an image should float to the right in a text:

Figure 43 – Float-right (Source: https://www.w3schools.com/css/css_float.asp)

https://www.w3schools.com/css/css_overflow.asp
https://www.w3schools.com/css/css_overflow.asp
https://www.w3schools.com/css/css_float.asp

151 | Page

• Example - float: left

The following example specifies that an image should float to the left in a text:

Figure 44 – Float-left(Source: https://www.w3schools.com/css/css_float.asp)

CSS Inline-block

• Display: inline-block allows to set a width and height on the element.

• With display: inline-block the top and bottom margins/paddings are respected

• Display: inline-block does not add a line-break after the element, so the element

can sit next to other elements.

Figure 45 – Inline-block (Source: https://www.w3schools.com/css/css_inline-block.asp)

CSS Align

• To horizontally center a block element (like <div>), use margin: auto

https://www.w3schools.com/css/css_float.asp
https://www.w3schools.com/css/css_inline-block.asp

152 | Page

• Setting the width of the element will prevent it from stretching out to the edges of

its container.

• The element will then take up the specified width, and the remaining space will

be split equally between the two margins:

Figure 46 – Align (Source: https://www.w3schools.com/css/css_align.asp)

CSS Combinators

• A CSS selector can contain more than one simple selector. Between the simple

selectors, we can include a combinator.

• There are four different combinators in CSS :

• descendant selector (space) -> e.g. div p {background-color: yellow }

• child selector (>) -> e.g. div > p {background-color: yellow }

• adjacent sibling selector (+) -> e.g. div + p {background-color: yellow }

• general sibling selector (~) -> e.g. div ~ p {background-color: yellow }

CSS Pseudo-class

• A pseudo-class is used to define a special state of an element.

• For example, it can be used to:

• Style an element when a user mouses over it

• Style visited and unvisited links differently

• Style an element when it gets focus

https://www.w3schools.com/css/css_align.asp

153 | Page

Figure 47 – Pseudo Class (Source: https://www.w3schools.com/css/css_pseudo_classes.asp)

CSS Pseudo-element

• A CSS pseudo-element is used to style specified parts of an element.

• For example, it can be used to:

• Style the first letter, or line, of an element

• Insert content before, or after, the content of an element

Figure 48 – Pseudo element (Source: https://www.w3schools.com/css/css_pseudo_elements.asp)

The ::first-line pseudo-element is used to add a special style to the first line of a text.

https://www.w3schools.com/css/css_pseudo_classes.asp
https://www.w3schools.com/css/css_pseudo_elements.asp

154 | Page

CSS Opacity

• The opacity property specifies the opacity/transparency of an element.

• The opacity property can take a value from 0.0 - 1.0. The lower value, the more

transparent

Figure 49 – CSS Opacity (Source: https://www.w3schools.com/css/css_image_transparency.asp)

CSS Navigation Bar

With CSS you can transform boring HTML menus into good-looking navigation bars.

Figure 50 – Navbar (Source: https://www.w3schools.com/css/css_navbar.asp)

https://www.w3schools.com/css/css_image_transparency.asp
https://www.w3schools.com/css/css_navbar.asp

155 | Page

CSS Dropdowns

With CSS you can transform boring HTML menus into good-looking navigation bars.

Figure 51 – Dropdown (Source: https://www.w3schools.com/css/css_dropdowns.asp)

CSS Image Gallery

CSS can be used to create an image gallery.

Figure 52 – Image gallery (Source: https://www.w3schools.com/css/css_image_gallery.asp)

https://www.w3schools.com/css/css_dropdowns.asp
https://www.w3schools.com/css/css_image_gallery.asp

156 | Page

CSS Image Sprites

• An image sprite is a collection of images put into a single image.

• A web page with many images can take a long time to load and generates multiple

server requests.

• Using image sprites will reduce the number of server requests and save

bandwidth.

Figure 53 – Image sprites (Source: https://www.w3schools.com/css/css_image_sprites.asp)

CSS Attr Selectors

• The [attribute] selector is used to select elements with a specified attribute.

• The following example selects all <a> elements with a target attribute:

Figure 54 – Attr Selector (Source: https://www.w3schools.com/css/css_attribute_selectors.asp)

https://www.w3schools.com/css/css_image_sprites.asp
https://www.w3schools.com/css/css_attribute_selectors.asp

157 | Page

CSS Forms

The look of an HTML form can be greatly improved with CSS:

Figure 55 – Forms (Source: https://www.w3schools.com/css/css_form.asp)

CSS Counters

CSS counters are "variables" maintained by CSS whose values can be incremented

by CSS rules (to track how many times they are used). Counters let you adjust the

appearance of content based on its placement in the document.

Figure 56 – Counter (Source: https://www.w3schools.com/css/css_counters.asp)

https://www.w3schools.com/css/css_form.asp
https://www.w3schools.com/css/css_counters.asp

158 | Page

CSS Website Layout

A website is often divided into headers, menus, content and a footer:

Figure 57 – Website layout (Source: https://www.w3schools.com/css/css_website_layout.asp)

CSS Units

• CSS has several different units for expressing a length.

• Many CSS properties take "length" values, such as width, margin, padding, font-

size, etc,

• Length is a number followed by a length unit, such as 10px, 2em, etc,

https://www.w3schools.com/css/css_website_layout.asp

159 | Page

Figure 58 – Units (Source: https://www.w3schools.com/css/css_units.asp)

CSS Specificity

• If there are two or more CSS rules that point to the same element, the selector with

the highest specificity value will "win", and its style declaration will be applied to

that HTML element.

• Think of specificity as a score/rank that determines which style declaration are

ultimately applied to an element.

Figure 59 – Specificity (Source: https://www.w3schools.com/css/css_specificity.asp)

https://www.w3schools.com/css/css_units.asp
https://www.w3schools.com/css/css_specificity.asp

160 | Page

In this example, we have used the "p" element as selector and specified a red color

for this element. The text will be red.

CSS !important

• The !important rule in CSS is used to add more importance to a property/value

than normal.

• In fact, if you use the !important rule, it will override ALL previous styling rules for

that specific property on that element!

Figure 60 – !important (Source: https://www.w3schools.com/css/css_important.asp)

CSS Math Function

• The CSS math functions allow mathematical expressions to be used as property

values. Some Math functions are: calc(), max() and min() functions.

• Example: the use of calc() to calculate the width of a <div> element:

https://www.w3schools.com/css/css_important.asp

161 | Page

Figure 61 – Math function (Source: https://www.w3schools.com/css/css_math_functions.asp)

https://www.w3schools.com/css/css_math_functions.asp
https://www.w3schools.com/css/css_math_functions.asp

162 | Page

3.2. CSS Advanced

CSS rounded corners

The border-radius property defines the radius of an element's corners.

Tip: This property allows you to add rounded corners to elements!

Figure 62 – Rounded corners (Source: https://www.w3schools.com/css/css3_borders.asp)

Figure 63 – Rounded corners (Source: https://www.w3schools.com/css/css3_borders.asp)

CSS Border Images

The CSS border-image property allows you to specify an image to be used instead

of the normal border around an element.

The property has three parts:

• The image to use as the border

• Where to slice the image

• Define whether the middle sections should be repeated or stretched

https://www.w3schools.com/css/css3_borders.asp
https://www.w3schools.com/css/css3_borders.asp

163 | Page

Figure 64 – Border image (Source: https://www.w3schools.com/css/css3_border_images.asp)

CSS Backgrounds

CSS allows you to add multiple background images for an element, through the

background-image property.

The following example has two background images, the first image is a flower

(aligned to the bottom and right) and the second image is a paper background

(aligned to the top-left corner).

Figure 65 – Backgrounds (Source: https://www.w3schools.com/css/css3_backgrounds.asp)

Figure 66 – Backgrounds (Source: https://www.w3schools.com/css/css3_backgrounds.asp)

https://www.w3schools.com/css/css3_border_images.asp
https://www.w3schools.com/css/css3_backgrounds.asp
https://www.w3schools.com/css/css3_backgrounds.asp

164 | Page

CSS Colours

• CSS supports +140 color names, HEX values, RGB values, RGBA values, HSL

values, HSLA values, and opacity.

Figures 67 and 68 – CSS Colours (Source: https://www.w3schools.com/css/css3_colors.asp)

Figures 69 and 70 – CSS Colours (Source: https://www.w3schools.com/css/css3_colors.asp)

https://www.w3schools.com/css/css3_colors.asp
https://www.w3schools.com/css/css3_colors.asp

165 | Page

CSS Colour Keywords

This page will explain the transparent, currentcolor, and inherit keywords:

• The transparent keyword is used to make a color transparent. This is often used

to make a transparent background color for an element.

• The currentcolor keyword is like a variable that holds the current value of the colour

property of an element.

This keyword can be useful if you want a specific colour to be consistent in an element

or a page.

The inherit keyword specifies that a property should inherit its value from its parent

element.

The inherit keyword can be used for any CSS property, and on any HTML element.

CSS Gradient

CSS gradients let you display smooth transitions between two or more specified

colours.

CSS defines three types of gradients:

• Linear Gradients (goes down/up/left/right/diagonally)

• Radial Gradients (defined by their center)

• Conic Gradients (rotated around a center point)

166 | Page

Figure 71 – Gradient Backgrounds (Source: https://www.w3schools.com/css/css3_gradients.asp)

CSS Shadows

With CSS you can add shadow to text and to elements.

In these chapters you will learn about the following properties :

• Text-shadow

• Box-shadow

Figure 72 – Shadows (Source: https://www.w3schools.com/css/css3_shadows.asp)

https://www.w3schools.com/css/css3_gradients.asp
https://www.w3schools.com/css/css3_shadows.asp

167 | Page

Figure 73 – Shadows (Source: https://www.w3schools.com/css/css3_shadows.asp)

CSS Text Effects

In this chapter you will learn about Text-overflow, word-wrap, word-break, writing-

mode:

• The text-overflow property specifies how overflowed content that is not

displayed should be signaled to the user.

• The CSS word-wrap property allows long words to be able to be broken and

wrap onto the next line.

• The CSS word-break property specifies line breaking rules.

• The CSS writing-mode property specifies whether lines of text are laid out

horizontally or vertically.

CSS Web Fonts

• Web fonts allow Web designers to use fonts that are not installed on the user's

computer.

• When you have found/bought the font you wish to use, just include the font file

on your web server, and it will be automatically downloaded to the user when

needed.

• Your "own" fonts are defined within the CSS @font-face rule

https://www.w3schools.com/css/css3_shadows.asp

168 | Page

Figure 74 – Web fonts (Source: https://www.w3schools.com/css/css3_fonts.asp)

CSS 2D transforms

CSS transforms allow you to move, rotate, scale, and skew elements.

Figure 75 – 2D Transform (Source: https://www.w3schools.com/css/css3_2dtransforms.asp)

CSS 3D transforms

With the CSS transform property you can use the following 3D transformation

methods:

• RotateX()

• RotateY()

• RotateZ()

Figure 76 – 3D Transform (Source: https://www.w3schools.com/css/css3_3dtransforms.asp)

https://www.w3schools.com/css/css3_fonts.asp
https://www.w3schools.com/css/css3_2dtransforms.asp
https://www.w3schools.com/css/css3_3dtransforms.asp

169 | Page

CSS Transitions

• CSS transitions allows you to change property values smoothly, over a given

duration.

• To create a transition effect, you must specify two things:

• the CSS property you want to add an effect to

• the duration of the effect

• The following example shows a 100px * 100px red <div> element. The <div>

element has also specified a transition effect for the width property, with a duration

of 2 seconds:

Figure 77 – Transitions (Source: https://www.w3schools.com/css/css3_transitions.asp)

CSS Animations

• An animation lets an element gradually change from one style to another.

• You can change as many CSS properties you want, as many times as you want.

• To use CSS animation, you must first specify some keyframes for the animation.

• Keyframes hold what styles the element will have at certain times.

• These are the main the main animation’s properties :

https://www.w3schools.com/css/css3_transitions.asp

170 | Page

Figure 78 – Animations (Source: https://www.w3schools.com/css/css3_animations.asp)

CSS Tooltips

• A tooltip is often used to specify extra information about something when the user

moves the mouse pointer over an element:

Figure 79 – Tooltip (Source: https://www.w3schools.com/css/css3_animations.asp)

https://www.w3schools.com/css/css3_animations.asp

171 | Page

CSS Style images

• Using CSS to style images allows you to uniformly specify how images should

appear across your website with only a few rulesets :

Add a border, change the shape and size of the image, …

Figure 80 – Images (Source: https://www.w3schools.com/css/css3_image_reflection.asp)

CSS image reflection

• The box-reflect property is used to create an image reflection.

• The value of the The box-reflect property can be : below, above, left, or right

Figure 81 – Image reflection (Source: https://www.w3schools.com/css/css3_image_reflection.asp)

https://www.w3schools.com/css/css3_image_reflection.asp

172 | Page

CSS Object-fit

The CSS object-fit property is used to specify how an or <video> should be

resized to fit its container.

This property tells the content to fill the container in a variety of ways; such as

"preserve that aspect ratio" or "stretch up and take up as much space as possible".

Look at the following image from Paris. This image is 400 pixels wide and 300 pixels

high:

Figure 82 – Object fit (Source: https://www.w3schools.com/css/css3_object-fit.asp)

CSS Object-position

Let's say that the part of the image that is shown, is not positioned as we want. To

position the image, we will use the object-position property

Here we will use the object-position property to position the image so that the great

old building is in center:

https://www.w3schools.com/css/css3_object-fit.asp

173 | Page

Figure 83 – Object position (Source: https://www.w3schools.com/css/css3_object-position.asp)

CSS Masking

• With CSS masking you create a mask layer to place over an element to hide

portions of the element partially or fully.

• The CSS mask-image property specifies a mask layer image.

• The mask layer image can be a PNG image, an SVG image, a CSS gradient,

or an SVG <mask>element

https://www.w3schools.com/css/css3_object-position.asp

174 | Page

Figure 84 – Masking (Source: https://www.w3schools.com/css/css3_masking.asp)

CSS Buttons

• There are lots of properties to style a button in CSS

• This is an example:

Figure 85 – Default Button (Source: https://www.w3schools.com/css/css3_buttons.asp)

Figure 86 – Button Coding (Source: https://www.w3schools.com/css/css3_buttons.asp)

https://www.w3schools.com/css/css3_masking.asp
https://www.w3schools.com/css/css3_buttons.asp
https://www.w3schools.com/css/css3_buttons.asp

175 | Page

CSS Pagination

If you have a website with lots of pages, you may wish to add some sort of pagination

to each page and these are some examples:

Figure 87 – Pagination (Source: https://www.w3schools.com/css/css3_pagination.asp)

Figure 88 – Pagination (Source: https://www.w3schools.com/css/css3_pagination.asp)

CSS Multiple Columns

The CSS multi-column layout allows easy definition of multiple columns of text - just

like in newspapers:

https://www.w3schools.com/css/css3_pagination.asp
https://www.w3schools.com/css/css3_pagination.asp

176 | Page

Figure 89 – Multiple Columns (Source: https://www.w3schools.com/css/css3_multiple_columns.asp)

CSS User Interface

In this chapter you will learn about the following CSS user interface properties:

• The resize property specifies if (and how) an element should be resizable by the

user.

Figure 90 – UI (Source: https://www.w3schools.com/css/css3_user_interface.asp)

• The outline-offset property adds space between an outline and the edge or border

of an element.

https://www.w3schools.com/css/css3_multiple_columns.asp
https://www.w3schools.com/css/css3_user_interface.asp

177 | Page

Figure 91 – UI (Source: https://www.w3schools.com/css/css3_user_interface.asp)

CSS Variables

• The var() function is used to insert the value of a CSS variable.

• CSS variables have access to the DOM, which means that you can create

variables with local or global scope, change the variables with JavnceaScript, and

change the variables based on media queries.

• A good way to use CSS variables is when it comes to the colors of your design.

Instead of copy and paste the same colors over and over again, you can place

them in variables.

CSS Box sizing

• The box-sizing property in CSS defines how the user should calculate the total

width and height of an element i.e padding and borders, are to be included or not.

Figure 92 – Box sizing (Source: https://www.w3schools.com/css/css3_box-sizing.asp)

https://www.w3schools.com/css/css3_user_interface.asp
https://www.w3schools.com/css/css3_box-sizing.asp

178 | Page

CSS Media Queries

Media queries in CSS3 extended the CSS2 media types idea: Instead of looking for

a type of device, they look at the capability of the device.

Media queries can be used to check many things, such as:

• width and height of the viewport

• width and height of the device

• orientation (is the tablet/phone in landscape or portrait mode?)

• resolution

Using media queries are a popular technique for delivering a tailored style sheet to

desktops, laptops, tablets, and mobile phones (such as iPhone and Android phones).

CSS MQ examples

Figure 93 – MQ Example (Source: https://www.w3schools.com/css/css3_mediaqueries_ex.asp)

https://www.w3schools.com/css/css3_mediaqueries_ex.asp

179 | Page

CSS Flexbox

The Flexible Box Layout Module makes it easier to design flexible responsive layout

structure without using float or positioning.

Figure 94 – Flexbox (Source: https://www.w3schools.com/css/css3_flexbox.asp)

https://www.w3schools.com/css/css3_flexbox.asp

180 | Page

3.3. CSS Responsive Web Design

RWD Intro

Responsive web design makes your web page look good on all devices.

Responsive web design uses only HTML and CSS.

Web pages can be viewed using many different devices: desktops, tablets, and

phones. Your web page should look good, and be easy to use, regardless of the

device.

Web pages should not leave out information to fit smaller devices, but rather adapt

its content to fit any device:

Figure 95 – RWD (Source: https://www.w3schools.com/css/css_rwd_intro.asp)

It is called responsive web design when you use CSS and HTML to resize, hide,

shrink, enlarge, or move the content to make it look good on any screen.

RWD Viewport

The viewport is the user's visible area of a web page.

The viewport varies with the device and will be smaller on a mobile phone than on a

computer screen.

https://www.w3schools.com/css/css_rwd_intro.asp

181 | Page

Before tablets and mobile phones, web pages were designed only for computer

screens, and it was common for web pages to have a static design and a fixed size.

Then, when we started surfing the internet using tablets and mobile phones, fixed

size web pages were too large to fit the viewport. To fix this, browsers on those

devices scaled down the entire web page to fit the screen.

This was not perfect!! But a quick fix.

Setting the Viewport

HTML5 introduced a method to let web designers take control over the viewport,

through the <meta> tag.

You should include the following <meta> viewport element in all your web pages:

Figure 96 – Setting Viewport (Source: https://www.w3schools.com/css/css_rwd_viewport.asp)

This gives the browser instructions on how to control the page's dimensions and

scaling.

The width=device-width part sets the width of the page to follow the screen-width

of the device (which will vary depending on the device).

The initial-scale=1.0 part sets the initial zoom level when the page is first loaded

by the browser.

Here is an example of a web page without the viewport meta tag, and the same

web page with the viewport meta tag:

https://www.w3schools.com/css/css_rwd_viewport.asp

182 | Page

Figure 97 – Viewport (Source: https://www.w3schools.com/css/css_rwd_viewport.asp)

RWD Grid-View

Many web pages are based on a grid-view, which means that the page is divided into

columns:

Figure 98 – Grid-View (Source: https://www.w3schools.com/css/css_rwd_grid.asp)

Many web pages are based on a grid-view, which means that the page is divided

into columns:

https://www.w3schools.com/css/css_rwd_viewport.asp
https://www.w3schools.com/css/css_rwd_grid.asp

183 | Page

Figure 99 – Grid-View (Source: https://www.w3schools.com/css/css_rwd_grid.asp)

Building a responsive Grid-View

First ensure that all HTML elements have the box-sizing property set to border-box.

This makes sure that the padding and border are included in the total width and height

of the elements.

Add the following code in your CSS:

Figure 100 – Responsive Grid-View (Source: https://www.w3schools.com/css/css_rwd_grid.asp)

The following example shows a simple responsive web page, with two columns:

https://www.w3schools.com/css/css_rwd_grid.asp
https://www.w3schools.com/css/css_rwd_grid.asp

184 | Page

Figure 101 – Responsive Grid-View (Source: https://www.w3schools.com/css/css_rwd_grid.asp)

Figure 102 – Responsive Grid-View (Source: https://www.w3schools.com/css/css_rwd_grid.asp)

RWD Media Queries

• Media query is a CSS technique introduced in CSS3.

• It uses the @media rule to include a block of CSS properties only if a certain

condition is true.

• If the browser window is 600px or smaller, the background color will be lightblue:

https://www.w3schools.com/css/css_rwd_grid.asp
https://www.w3schools.com/css/css_rwd_grid.asp

185 | Page

Figure 103 – Media query (Source: https://www.w3schools.com/css/css_rwd_mediaqueries.asp)

Add a breakpoint

Media queries can help with that. We can add a breakpoint where certain parts of the

design will behave differently on each side of the breakpoint.

Figure 104 – Media query (Source: https://www.w3schools.com/css/css_rwd_mediaqueries.asp)

Use a media query to add a breakpoint at 768px:

Example: When the screen (browser window) gets smaller than 768px, each

column should have a width of 100%:

https://www.w3schools.com/css/css_rwd_mediaqueries.asp
https://www.w3schools.com/css/css_rwd_mediaqueries.asp

186 | Page

Figure 105 – Media query (Source: https://www.w3schools.com/css/css_rwd_mediaqueries.asp)

RWD Images

• If the width property is set to a percentage and the height property is set to "auto",

the image will be responsive and scale up and down:

Figure 106 – Image (Source: https://www.w3schools.com/css/css_rwd_images.asp)

https://www.w3schools.com/css/css_rwd_mediaqueries.asp
https://www.w3schools.com/css/css_rwd_images.asp

187 | Page

• If the max-width property is set to 100%, the image will scale down if it has to, but

never scale up to be larger than its original size:

Figure 107 – The max-width property (Source: https://www.w3schools.com/css/css_rwd_images.asp)

Notice that in the example above, the image can be scaled up to be larger than its

original size. A better solution, in many cases, will be to use the max-width property

instead.

Using the max-width property:

The max-width property is set to 100%, the image will scale down if it has to, but

never scale up to be larger than its original size:

Figure 108 – The max-width property (Source: https://www.w3schools.com/css/css_rwd_images.asp)

https://www.w3schools.com/css/css_rwd_images.asp
https://www.w3schools.com/css/css_rwd_images.asp

188 | Page

RWD Videos

• If the width property is set to 100%, the video player will be responsive and scale

up and down:

Figure 109 – Video (Source: https://www.w3schools.com/css/css_rwd_videos.asp)

• If the max-width property is set to 100%, the video player will scale down if it must,

but never scale up to be larger than its original size:

Figure 110 – Video (Source: https://www.w3schools.com/css/css_rwd_videos.asp)

Notice that in the example above, the video player can be scaled up to be larger than

its original size. A better solution, in many cases, will be to use the max-width property

instead.

https://www.w3schools.com/css/css_rwd_videos.asp
https://www.w3schools.com/css/css_rwd_videos.asp

189 | Page

Using the max-width property:

If the max-width property is set to 100%, the video player will scale down if it has to,

but never scale up to be larger than its original size:

Figure 111 – Video (Source: https://www.w3schools.com/css/css_rwd_videos.asp)

RWD Frameworks

• There are many free CSS Frameworks that offer Responsive Design.

• A great way to create a responsive design, is to use a responsive style sheet,

like W3.CSS

• W3.CSS makes it easy to develop sites that look nice at any size!

• Another popular framework is Bootstrap. It uses HTML and CSS to make

responsive web pages.

https://www.w3schools.com/css/css_rwd_videos.asp

190 | Page

3.4. CSS Grid

Grid intro

• The CSS Grid Layout Module offers a grid-based layout system, with rows and

columns, making it easier to design web pages without having to use floats and

positioning.

Figure 112 – CSS Grid (Source: https://www.w3schools.com/css/css_grid.asp)

Grid Container

• To make an HTML element behave as a grid container, you have to set the display

property to grid or inline-grid.

• Grid containers consist of grid items, placed inside columns and rows.

Figure 113 – Grid Container (Source: https://www.w3schools.com/css/css_grid_container.asp)

https://www.w3schools.com/css/css_grid.asp
https://www.w3schools.com/css/css_grid_container.asp

191 | Page

Grid Item

• A grid container contains grid items.

• By default, a container has one grid item for each column, in each row, but you

can style the grid items so that they will span multiple columns and/or rows.

• The grid-column property defines on which column(s) to place an item.

• You define where the item will start, and where the item will end.

Figure 114 – Grid Items (Source: https://www.w3schools.com/css/css_grid_item.asp)

https://www.w3schools.com/css/css_grid_item.asp

192 | Page

3.5. CSS SASS

Sass Introduction

What is Sass?

• Sass stands for Syntactically Awesome Stylesheet

• Sass is an extension to CSS

• Sass is a CSS pre-processor

• Sass is completely compatible with all versions of CSS

• Sass reduces repetition of CSS and therefore saves time

• Sass was designed by Hampton Catlin and developed by Natalie Weizenbaum in

2006

• Sass is free to download and use

Why Use Sass?

Stylesheets are getting larger, more complex, and harder to maintain. This is where

a CSS pre-processor can help.

Sass lets you use features that do not exist in CSS, like variables, nested rules,

mixins, imports, inheritance, built-in functions, and other stuff.

A Simple Example why Sass is Useful

Let's say we have a website with three main colors:

Figure 115 – Colours on SASS (Source: https://www.w3schools.com/sass/sass_intro.php)

https://www.w3schools.com/sass/sass_intro.php

193 | Page

So, how many times do you need to type those HEX values? A LOT of times. And

what about variations of the same colors?

Instead of typing the above values a lot of times, you can use Sass and write this:

Figure 116 – SASS variable (Source: https://www.w3schools.com/sass/sass_variables.php)

So, when using Sass, and the primary color changes, you only need to change it

in one place.

How Does Sass Work?

A browser does not understand Sass code. Therefore, you will need a Sass pre-

processor to convert Sass code into standard CSS.

This process is called transpiling. So, you need to give a transpiler (some kind of

program) some Sass code and then get some CSS code back.

https://www.w3schools.com/sass/sass_variables.php

194 | Page

Sass File Type

Sass files has the ".scss" file extension.

Sass Comments

Sass supports standard CSS comments /* comment */, and in addition it supports

inline comments // comment:

Figure 117 – Comments (Source: https://www.w3schools.com/sass/sass_intro.php)

Sass Variables

Variables are a way to store information that you can re-use later.

With Sass, you can store information in variables, like:

• strings

• numbers

• colors

• booleans

• lists

• nulls

https://www.w3schools.com/sass/sass_intro.php

195 | Page

Sass uses the $ symbol, followed by a name, to declare variables:

Figure 118 – SASS variable (Source: https://www.w3schools.com/sass/sass_variables.php)

The following example declares 4 variables named myFont, myColor, myFontSize,

and myWidth. After the variables are declared, you can use the variables wherever

you want:

Figure 119 – SASS variable (Source: https://www.w3schools.com/sass/sass_variables.php)

So, when the Sass file is transpiled, it takes the variables (myFont, myColor, etc.) and

outputs normal CSS with the variable values placed in the CSS, like this:

https://www.w3schools.com/sass/sass_variables.php
https://www.w3schools.com/sass/sass_variables.php

196 | Page

Figure 120 – SASS variable (Source: https://www.w3schools.com/sass/sass_variables.php)

Sass Variable Scope

Sass variables are only available at the level of nesting where they are defined.

Look at the following example:

Figure 121 – SASS variable (Source: https://www.w3schools.com/sass/sass_variables.php)

Will the color of the text inside a <p> tag be red or green? It will be red!

The other definition, $myColor: green; is inside the <h1> rule and will only be

available there!

https://www.w3schools.com/sass/sass_variables.php
https://www.w3schools.com/sass/sass_variables.php

197 | Page

So, the CSS output will be:

Figure 122 – SASS variable (Source: https://www.w3schools.com/sass/sass_variables.php)

Ok, that is the default behavior for variable scope.

Using Sass !global

The default behavior for variable scope can be overridden by using the !global switch.

!global indicates that a variable is global, which means that it is accessible on all

levels.

Look at the following example (same as above; but with !global added):

Figure 123 – SASS variable (Source: https://www.w3schools.com/sass/sass_variables.php)

https://www.w3schools.com/sass/sass_variables.php
https://www.w3schools.com/sass/sass_variables.php

198 | Page

Now the color of the text inside a <p> tag will be green!

So, the CSS output will be:

Figure 124 – SASS variable (Source: https://www.w3schools.com/sass/sass_variables.php)

Sass Nested Rules

Sass lets you nest CSS selectors in the same way as HTML.

Look at an example of some Sass code for a site's navigation:

Figure 125 – SASS nested (Source: https://www.w3schools.com/sass/sass_nesting.php)

https://www.w3schools.com/sass/sass_variables.php
https://www.w3schools.com/sass/sass_nesting.php

199 | Page

Notice that in Sass, the ul, li, and selectors are nested inside the nav selector.

While in CSS, the rules are defined one by one (not nested):

Figure 126 – SASS nested (Source: https://www.w3schools.com/sass/sass_nesting.php)

Because you can nest properties in Sass, it is cleaner and easier to read than

standard CSS.

Sass Nested Properties

Many CSS properties have the same prefix, like font-family, font-size and font-weight

or text-align, text-transform and text-overflow.

With Sass, you can write them as nested properties:

https://www.w3schools.com/sass/sass_nesting.php

200 | Page

Figure 127 – SASS nested (Source: https://www.w3schools.com/sass/sass_nesting.php)

The Sass transpiler will convert the above to normal CSS:

Figure 128 – SASS nested (Source: https://www.w3schools.com/sass/sass_nesting.php)

Sass @import and Partials

Sass keeps the CSS code DRY (Don't Repeat Yourself). One way to write DRY code

is to keep related code in separate files.

You can create small files with CSS snippets to include in other Sass files. Examples

of such files can be: reset file, variables, colors, fonts, font-sizes, etc.

https://www.w3schools.com/sass/sass_nesting.php
https://www.w3schools.com/sass/sass_nesting.php

201 | Page

Sass Importing Files

Just like CSS, Sass also supports the @import directive.

The @import directive allows you to include the content of one file in another.

The CSS @import directive has a major drawback due to performance issues; it

creates an extra HTTP request each time you call it. However, the Sass @import

directive includes the file in the CSS; so no extra HTTP call is required at runtime!

Figure 129 – SASS import (Source: https://www.w3schools.com/sass/sass_import.php)

Tip: You do not need to specify a file extension, Sass automatically assumes that

you mean a .sass or .scss file. You can also import CSS files. The @import

directive imports the file and any variables or mixins defined in the imported file

can then be used in the main file.

You can import as many files as you need in the main file:

Figure 130 – SASS import (Source: https://www.w3schools.com/sass/sass_import.php)

https://www.w3schools.com/sass/sass_import.php
https://www.w3schools.com/sass/sass_import.php

202 | Page

Let's look at an example: Let's assume we have a reset file called "reset.scss", that

looks like this:

Figure 131 – SASS import (Source: https://www.w3schools.com/sass/sass_import.php)

And now we want to import the "reset.scss" file into another file called

"standard.scss".

Here is how we do it: It is normal to add the @import directive at the top of a file;

this way its content will have a global scope:

Figure 132 – SASS import (Source: https://www.w3schools.com/sass/sass_import.php)

https://www.w3schools.com/sass/sass_import.php
https://www.w3schools.com/sass/sass_import.php

203 | Page

So, when the "standard.css" file is transpiled, the CSS will look like this:

Figure 133 – SASS import (Source: https://www.w3schools.com/sass/sass_import.php)

Sass Partials

By default, Sass transpiles all the .scss files directly. However, when you want to

import a file, you do not need the file to be transpiled directly.

Sass has a mechanism for this: If you start the filename with an underscore, Sass will

not transpile it. Files named this way are called partials in Sass.

So, a partial Sass file is named with a leading underscore:

Figure 134 – SASS import (Source: https://www.w3schools.com/sass/sass_import.php)

https://www.w3schools.com/sass/sass_import.php
https://www.w3schools.com/sass/sass_import.php

204 | Page

The following example shows a partial Sass file named "_colors.scss". (This file will

not be transpiled directly to "colors.css"):

Figure 135 – SASS import (Source: https://www.w3schools.com/sass/sass_import.php)

Now, if you import the partial file, omit the underscore. Sass understands that it should

import the file "_colors.scss":

Figure 136 – SASS import (Source: https://www.w3schools.com/sass/sass_import.php)

Sass @mixin and @include

Sass Mixins

The @mixin directive lets you create CSS code that is to be reused throughout the

website.

The @include directive is created to let you use (include) the mixin.

Defining a Mixin

A mixin is defined with the @mixin directive.

https://www.w3schools.com/sass/sass_import.php
https://www.w3schools.com/sass/sass_import.php

205 | Page

Figure 137 – sass @mixin (Source: https://www.w3schools.com/sass/sass_mixin_include.php)

The following example creates a mixin named "important-text":

Figure 138 – sass @mixin (Source: https://www.w3schools.com/sass/sass_mixin_include.php)

Using a Mixin

The @include directive is used to include a mixin.

Figure 139 – sass @mixin (Source: https://www.w3schools.com/sass/sass_mixin_include.php)

So, to include the important-text mixin created above:

https://www.w3schools.com/sass/sass_mixin_include.php
https://www.w3schools.com/sass/sass_mixin_include.php
https://www.w3schools.com/sass/sass_mixin_include.php

206 | Page

Figure 140 – sass @mixin (Source: https://www.w3schools.com/sass/sass_mixin_include.php)

The Sass transpiler will convert the above to normal CSS:

Figure 141 – sass @mixin (Source: https://www.w3schools.com/sass/sass_mixin_include.php)

A mixin can also include other mixins:

Figure 142 – sass @mixin (Source: https://www.w3schools.com/sass/sass_mixin_include.php)

https://www.w3schools.com/sass/sass_mixin_include.php
https://www.w3schools.com/sass/sass_mixin_include.php
https://www.w3schools.com/sass/sass_mixin_include.php

207 | Page

Passing Variables to a Mixin

Mixins accept arguments. This way you can pass variables to a mixin.

Here is how to define a mixin with arguments:

Figure 143 – sass @mixin (Source: https://www.w3schools.com/sass/sass_mixin_include.php)

Notice that the arguments are set as variables and then used as the values (color

and width) of the border property.

After compilation, the CSS will look like this:

Figure 144 – sass @mixin (Source: https://www.w3schools.com/sass/sass_mixin_include.php)

https://www.w3schools.com/sass/sass_mixin_include.php
https://www.w3schools.com/sass/sass_mixin_include.php

208 | Page

Sass @extend Directive

The @extend directive lets you share a set of CSS properties from one selector to

another.

The @extend directive is useful if you have almost identically styled elements that

only differ in some small details.

The following Sass example first creates a basic style for buttons (this style will be

used for most buttons). Then, we create one style for a "Report" button and one style

for a "Submit" button. Both "Report" and "Submit" button inherit all the CSS properties

from the .button-basic class, through the @extend directive. In addition, they have

their own colors defined:

Figure 145 – SASS Extend (Source: https://www.w3schools.com/sass/sass_extend.php)

https://www.w3schools.com/sass/sass_extend.php

209 | Page

After compilation, the CSS will look like this:

Figure 146 – SASS Extend (Source: https://www.w3schools.com/sass/sass_extend.php)

By using the @extend directive, you do not need to specify several classes for an

element in your HTML code, like this: <button class="button-basic button-

report">Report this</button>. You just need to specify .button-report to get both

sets of styles.

The @extend directive helps keep your Sass code very DRY.

https://www.w3schools.com/sass/sass_extend.php

210 | Page

4. SQL -
Structured
Query
Language

211 | Page

Topic Information

Topic:

4. SQL

Prerequisites:

Basic computer literacy, basic software installed, and basic knowledge of working with

files.

Workload:

10 hours

Description:

In this topic, we cover the basics of SQL to get learners acquainted with the

programming world and encourage them to gain more expertise on SQL. We explain

the attributes, syntax, and other relevant terms that learners may have heard or be

familiar with and how these fit into the programming language. We provide a detailed

account of the logic and syntax used in SQL, its structure and other basic and essential

functions.

Learning outcomes:

• Recognise the concept and usage of Structured Query Language (SQL) in Relational

Database Management Systems (RDBMS)

• Formulate basic syntax of SQL queries

• Use SQL to access, manage, and manipulate RDBMS

Material required:

• Computer or laptop

212 | Page

• Internet connection

• Online SQL compiler (https://www.mycompiler.io/new/sql)

• Online text editor (https://www.w3schools.com/sql/default.asp)

Lesson Scenario:

The total time dedicated to this topic is 10 hours, and it is up to the judgement of the

trainer/coach to decide how much time will be spent on each subtopic. We suggest using

the PPT training presentations explicitly created for this topic to ease the teaching

process and increase time efficiency. These presentations encompass the following:

• Progressive development of subtopics and core concepts to retain, and

• Recommended Exercises.

Depending on the trainer’s/coach’s preferences, the progressive development of the

presentations allows the completion of the SQL session within the stipulated time, i.e.,

10 hours. The presentations can also be made available to learners for self-studying.

Subtopics:

• 4.1. SQL Basics

• 4.2. SQL Databases

• 4.3. SQL References

• 4.4. SQL Examples

Additional resources:

• W3Schools - Guide for every SQL keyword and function, and examples for

each of them

• Tutorialspoint – Another detailed guide on SQL keywords and functions, and

various examples for each them

https://www.mycompiler.io/new/sql
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/
https://www.tutorialspoint.com/sql/index.htm

213 | Page

4.1. SQL Basics

What is SQL?

SQL stands for Structured Query Language. SQL is a standard programming language

specifically designed for storing, retrieving, managing or manipulating data found within

a Relational Database Management System (RDBMS). A relational database is a

collection of data items with pre-defined relationships between them. These items are

organised as a set of tables with columns and rows.

SQL became an ISO standard in 1987.

SQL is the most widely-implemented database language supported by popular relational

database systems, like MySQL, SQL Server, and Oracle. SQL was initially developed

at IBM in the early 1970s. Originally, it was called SEQUEL (Structured English Query

Language) and it was later changed to SQL (pronounced as S-Q-L).

Applications of SQL

SQL is one of the most widely used query languages for databases. Some of its many

applications are:

● Allowing users to access data in the relational database management systems,

● Allowing users to describe the data,

● Allowing users to define the data in a database and manipulate that data.

SQL Syntax

SQL statements are straightforward, like plain English, but with a specific syntax.

An SQL statement is composed of a sequence of keywords, identifiers etc., terminated

by a semicolon (;).

Example:

SELECT emp_name, hire_date, salary FROM employees WHERE salary > 5000;

214 | Page

For better readability, you can also write the same statement, as follows:

SELECT emp_name, hire_date, salary

FROM employees

WHERE salary > 5000;

Use semicolon at the end of an SQL statement — it terminates the statement or submits

the information to the database server.

Case Sensitivity in SQL

Consider another SQL statement that retrieves records from the Employees table:

SELECT emp_name, hire_date, salary FROM employees;

The same statement can also be written as follows:

select emp_name, hire_date, salary from employees;

SQL keywords are case-insensitive, which means SELECT is the same as select.

However, the database and table names may be case-sensitive depending on the

operating system. In general, Unix or Linux platforms are case-sensitive, whereas

Windows platforms aren't.

SQL Select

The SELECT statement selects or retrieves data from one or more tables. You can use

this statement to retrieve all the rows from a table in one go or retrieve only those rows

that satisfy a specific condition or a combination of conditions.

Suppose we have a table named Employees in our database that contains the following

records:

215 | Page

| emp_id| emp_name| hire_date| salary| dept_id|

+--------+--------------+------------+--------+---------+

| 1 | Ethan Hunt | 2001-05-01 | 5000 | 4 |

| 2 | Tony Montana | 2002-07-15 | 6500 | 1 |

| 3 | Sarah Connor | 2005-10-18 | 8000 | 5 |

| 4 | Rick Deckard | 2007-01-03 | 7200 | 3 |

| 5 | Martin Blank | 2008-06-24 | 5600 | NULL |

+--------+--------------+------------+--------+---------+

Select All from Table

The following statement will return all the rows from the employees’ table.

>> SELECT * FROM employees;

Select Specific Columns from Table

If you don't require all the data, you can select specific columns, like this:

SELECT emp_id, emp_name, hire_date, salary

FROM employees;

After executing the above statement, you will get an output like this:

| emp_id| emp_name| hire_date| salary|

216 | Page

+--------+--------------+------------+--------+

| 1 | Ethan Hunt | 1995-10-30 | 5000 |

| 2 | Tony Montana | 1990-07-15 | 6500 |

| 3 | Sarah Connor | 2011-04-13 | 5600 |

| 4 | Rick Deckard | 2005-10-18 | 7200 |

| 5 | Martin Blank | 1996-05-24 | 8000 |

+--------+--------------+------------+--------+

SQL Select Distinct

The SELECT DISTINCT statement omits duplicated values when used in a query.

You can find duplicated values inside a table, but sometimes you want to see the

“unique” values.

Syntax:

SELECT DISTINCT column1, column2, ...

FROM table_name;

In the following examples, we will be using the Customers table that contains data about

our customers.

Table 1 - Customers table in SELECT DISTINCT example (Source:

https://www.w3schools.com/sql/sql_distinct.asp)

https://www.w3schools.com/sql/sql_distinct.asp

217 | Page

To select all values from the Country column in the Customers table, you would use the

following statement:

SELECT Country FROM Customers;

However, this statement will include duplicate values.

If you want to omit the duplicate values from your query, use SELECT DISTINCT:

SELECT DISTINCT Country FROM Customers;

Suppose you wanted to list the number of different customer countries; you would use

the following statement:

SELECT COUNT(DISTINCT Country) FROM Customers;

Please note that this example will not work in Firefox since COUNT(DISTINCT

column_name) is not supported in MS Access.

To get the equivalent result in Access, use this:

>> SELECT Count(*) AS DistinctCountries

 FROM (SELECT DISTINCT Country FROM Customers);

SQL Where

Previously, we have learnt how to fetch all the records from a table or columns from a

table.

However, in real-world cases, we generally need to select, update or delete only those

records which fulfil certain conditions, like users who belong to a particular age group,

country, etc.

The WHERE clause is used with the SELECT, UPDATE, and DELETE.

https://www.tutorialrepublic.com/sql-tutorial/sql-select-statement.php
https://www.tutorialrepublic.com/sql-tutorial/sql-update-statement.php
https://www.tutorialrepublic.com/sql-tutorial/sql-delete-statement.php

218 | Page

The WHERE clause is used with the SELECT statement to extract only those records

that fulfil specified conditions.

The basic syntax is as follows:

SELECT column_list

FROM table_name

WHERE condition;

Now, let's check out some examples that demonstrate how it works.

Suppose we have a table called Employees in our database with the following records:

| emp_id| emp_name| hire_date| salary| dept_id|

+--------+--------------+------------+--------+---------+

| 1 | Ethan Hunt | 2001-05-01 | 5000 | 4 |

| 2 | Tony Montana | 2002-07-15 | 6500 | 1 |

| 3 | Sarah Connor | 2005-10-18 | 8000 | 5 |

| 4 | Rick Deckard | 2007-01-03 | 7200 | 3 |

+--------+--------------+------------+--------+---------+

The following SQL statement will return all employees from the Employees’ table whose

salary is greater than 7000:

SELECT * FROM employees WHERE salary > 7000;

The WHERE clause simply filters out the unwanted data.

Another example would be to select all employees with department id =1:

SELECT * FROM employees WHERE dept_id=1;

The following table provides the list of operators that can be used with the WHERE

clause:

219 | Page

Table 2 -Table of Operators used in WHERE clause (Source: https://www.w3schools.com/sql/sql_where.asp)

SQL And, Or, Not

The WHERE clause can be combined with AND, OR, and NOT operators.

The AND and OR operators are used to filter records based on more than one condition.

The AND operator displays a record if all the conditions that use AND are TRUE.

AND Syntax:

SELECT column1, column2, ...

FROM table_name

WHERE condition1 AND condition2 AND condition3 ...;

Example: Select all fields from Customers table where country is “Germany” AND City

is “Berlin”.

SELECT * FROM Customers

WHERE Country='Germany' AND City='Berlin';

The OR operator displays a record if any of the conditions that use OR are TRUE.

https://www.w3schools.com/sql/sql_where.asp

220 | Page

OR Syntax:

SELECT column1, column2, ...

FROM table_name

WHERE condition1 OR condition2 OR condition3 ...;

Example 1: Select all fields from Customers table where city is “Berlin” or “München”

SELECT * FROM Customers.

WHERE City='Berlin' OR City='München';

Example 2: Select all fields from Customers table where country is “Germany” or “Spain”.

SELECT * FROM Customers

WHERE Country='Germany' OR Country='Spain';

The NOT operator displays a record if the condition(s) is NOT TRUE.

NOT Syntax:

SELECT column1, column2, ...

FROM table_name

WHERE NOT condition;

Example: Select all fields from Customers table where country is NOT “Germany”.

SELECT * FROM Customers

WHERE NOT Country='Germany';

Combining AND, OR and NOT

Example 1: Select all rows from the Customers table where country is Germany and

city must be either Berlin or München.

221 | Page

SELECT * FROM Customers

WHERE Country='Germany' AND (City='Berlin' OR City='München');

Example 2: Select all rows from the Customers table where country is NOT Germany

and NOT USA.

SELECT * FROM Customers

WHERE NOT Country='Germany' AND NOT Country='USA';

SQL Order By

The ORDER BY keyword sorts the result-set in ascending or descending order. The

ORDER BY keyword sorts the records in ascending order by default. To sort the records

in descending order, use the DESC keyword.

ORDER BY Syntax:

SELECT column1, column2, ...

FROM table_name

ORDER BY column1, column2, ... ASC|DESC;

In the following examples, we will use the Customers table shown below:

Table 3 - Customers Table in ORDER BY example (Source: https://www.w3schools.com/sql/sql_orderby.asp)

https://www.w3schools.com/sql/sql_orderby.asp

222 | Page

Example 1: Selects all customers from the Customers table and sorts them by the

Country column

SELECT * FROM Customers

ORDER BY Country;

Example 2: Selects all customers from the same table and sorts them in descending

order by the Country column

SELECT * FROM Customers

ORDER BY Country DESC;

Example 3: Selects all customers from the same table and sorts them by Country and

Customer Name.

SELECT * FROM Customers

ORDER BY Country, CustomerName;

Here, the order is initially sorted by Country. However, if there are some rows that have

the same country, then they are sorted by Customer Name.

Example 4: Selects all customers from the same table and sorts them in ascending order

by Country and descending order by Customer Name

SELECT * FROM Customers

ORDER BY Country ASC, CustomerName DESC;

SQL Insert Into

The INSERT INTO statement inserts new records in a table.

For your code to run correctly, specify both the column names and the values that will

be inserted.

Syntax:

223 | Page

INSERT INTO table_name (column1, column2, column3, ...)

VALUES (value1, value2, value3, ...);

Table 4 - INSERT INTO Example (Source:: https://www.w3schools.com/sql/sql_insert.asp)

For example, to add a new record in your “Customers” table, use the following:

INSERT INTO Customers (CustomerName, ContactName, Address, City, PostalCode,

Country)

VALUES ('Cardinal', 'Tom B. Erichsen', 'Skagen 21', 'Stavanger', '4006', 'Norway');

SQL Null Values

A field with a NULL value is a field with no value. If a field in a table is optional, it is

possible to insert a new record or update a record without adding a value to this field.

Then, the field will be saved with a NULL value.

Note: A NULL value is different from a zero value or a field that contains spaces. A field

with a NULL value has been left blank during record creation!

Testing for NULL Values

It is impossible to test for NULL values with comparison operators, such as =, <, or <>.

Instead, we will have to use the IS NULL and IS NOT NULL operators.

IS NULL Syntax:

224 | Page

SELECT column_names

FROM table_name

WHERE column_name IS NULL;

IS NOT NULL Syntax:

SELECT column_names

FROM table_name

WHERE column_name IS NOT NULL;

The following examples use the table below:

Table 5 - Customers Table in NULL Values Example (Source:

https://www.w3schools.com/sql/sql_null_values.asp)

Example of IS NULL

Selects all customers with Null values (i.e. empty values) in the Address column:

SELECT CustomerName, ContactName, Address

FROM Customers

WHERE Address IS NULL;

To look for Null values, always use IS NULL.

Example of IS NULL

Selects all customers with NOT Null values (i.e. non-empty values) in the Address

column:

SELECT CustomerName, ContactName, Address

FROM Customers

225 | Page

WHERE Address IS NOT NULL;

SQL Update

The UPDATE statement modifies the existing records of a table.

UPDATE table_name

SET column1 = value1, column2 = value2, ...

WHERE condition;

Be careful when updating records in a table! Notice the WHERE clause in the UPDATE

statement. The WHERE clause specifies which record(s) should be updated.

If you omit the WHERE clause, all records in the table will be updated!

Example

Table 6 - Customers table in UPDATE example (Source: https://www.w3schools.com/sql/sql_update.asp)

To update CustomerID=1 from the “Customers” table in the sample database, use the

following:

UPDATE Customers

SET ContactName = 'Alfred Schmidt', City= 'Frankfurt'

WHERE CustomerID = 1;

226 | Page

And the “Customers” table will now look like this:

Table 7 - Customers table in UPDATE example (Source: https://www.w3schools.com/sql/sql_update.asp)

The WHERE clause determines how many records will be updated.

The following SQL statement will update the ContactName to "Juan" for all records

where the country is "Mexico" in the Customers table:

UPDATE Customers

SET ContactName='Juan'

WHERE Country='Mexico';

SQL Delete

The DELETE statement deletes existing records in a table.

DELETE FROM table_name WHERE condition;

Keep in mind that you need to be careful when deleting records in a table! Notice the

WHERE clause in the DELETE statement. The WHERE clause specifies which

record(s) should be deleted.

227 | Page

If you omit the WHERE clause, all records in the table will be deleted!

Example:

DELETE FROM Customers WHERE CustomerName='Alfreds Futterkiste';

Delete All Records

It is possible to delete all rows in a table without deleting the table itself. This means that

the table’s structure, attributes, and indexes will stay intact:

DELETE FROM table_name;

SQL Select Top

The SELECT TOP clause is used to specify the number of records that will be returned.

The SELECT TOP clause is useful on large tables with thousands of records. However,

returning a large number of records can impact performance.

Note that not all database systems support the SELECT TOP clause. MySQL supports

the LIMIT clause to select a limited number of records, while Oracle uses FETCH FIRST

n ROWS ONLY and ROWNUM.

SQL Server/MS Access Syntax:

SELECT TOP number|percent column_name(s)

FROM table_name

WHERE condition;

MySQL Syntax:

SELECT column_name(s)

FROM table_name

WHERE condition

228 | Page

LIMIT number;

Oracle 12 Syntax:

SELECT column_name(s)

FROM table_name

ORDER BY column_name(s)

FETCH FIRST number ROWS ONLY;

Older Oracle Syntax:

SELECT column_name(s)

FROM table_name

WHERE ROWNUM <= number;

Older Oracle Syntax with ORDER BY:

SELECT *

FROM (SELECT column_name(s) FROM table_name ORDER BY column_name(s))

WHERE ROWNUM <= number;

We will use the “Customers” table shown below in the following examples.

Table 8 - Customers table in SELECT TOP examples (Source: https://www.w3schools.com/sql/sql_top.asp)

Examples of TOP, LIMIT and FETCH FIRST

To select the first three records from the Customers table in SQL Server/MS Access,

use the following:

SELECT TOP 3 * FROM Customers;

https://www.w3schools.com/sql/sql_top.asp

229 | Page

To execute a query with the same result as above in MySQL, use the following

statement:

SELECT * FROM Customers

LIMIT 3;

To execute a query with the same result as the two above in Oracle:

SELECT * FROM Customers

FETCH FIRST 3 ROWS ONLY;

Examples of TOP PERCENT

To select the first 50% of records found in the Customers table, execute the following

statement in SQL Server/MS Access:

SELECT TOP 50 PERCENT * FROM Customers;

Its equivalent in Oracle is the following:

SELECT * FROM Customers

FETCH FIRST 50 PERCENT ROWS ONLY;

Examples of ADD a WHERE Clause

In the following example, we are selecting the first three records from the Customers

table, where the Country is “Germany” for SQL Server/MS Access:

>> SELECT TOP 3 * FROM Customers

 WHERE Country='Germany';

Its equivalent in MySQL:

SELECT * FROM Customers

WHERE Country='Germany'

LIMIT 3;

230 | Page

Its equivalent in Oracle:

SELECT * FROM Customers

WHERE Country='Germany'

FETCH FIRST 3 ROWS ONLY;

SQL Min and Max

The MIN() function returns the smallest values from selected columns.

MIN() Syntax

SELECT MIN(column_name)

FROM table_name

WHERE condition;

The MAX() function returns the largest value from selected columns.

MAX() Syntax

SELECT MAX(column_name)

FROM table_name

WHERE condition;

In the following examples, we will use the Products table shown below:

Table 9 - Products Table in Min and Max Examples (Source: https://www.w3schools.com/sql/sql_min_max.asp)

231 | Page

Example 1: Finds the price of the cheapest product

SELECT MIN(Price) AS SmallestPrice

FROM Products;

Example 2: Finds the price of the most expensive product

SELECT MAX(Price) AS LargestPrice

FROM Products;

SQL Count, Avg, Sum

The COUNT() function returns the number of rows that match a specified criterion.

COUNT() Syntax

SELECT COUNT(column_name)

FROM table_name

WHERE condition;

The AVG() function returns the average value of a numeric column.

AVG() Syntax

SELECT AVG(column_name)

FROM table_name

WHERE condition;

The SUM() function returns the total sum of a numeric column.

SUM() Syntax

SELECT SUM(column_name)

232 | Page

FROM table_name

WHERE condition;

We will use the Products table in the following examples below.

Table 10 - Products table in Count, Avg, Sum Examples (Source:

https://www.w3schools.com/sql/sql_count_avg_sum.asp)

Example of COUNT()

Execute a query to find the number of products:

SELECT COUNT(ProductID)

FROM Products;

Example of AVG()

Execute a query to find the average price of all products:

SELECT AVG(Price)

FROM Products;

Table 11 - OrdersDetails table in Count, Avg, Sum Examples (Source:

https://www.w3schools.com/sql/sql_count_avg_sum.asp)

In the following example, we will use the OrdersDetails table, shown above, to find the

sum of “Quantity”:

https://www.w3schools.com/sql/sql_count_avg_sum.asp

233 | Page

SELECT SUM(Quantity)

FROM OrderDetails;

SQL Like

The LIKE operator is used in a WHERE clause to search for a specified pattern in a

column.

LIKE Syntax

SELECT column1, column2, ...

FROM table_name

WHERE column LIKE pattern;

Here are some examples showing different LIKE operators with '%' and '_' wildcards:

Table 12 - LIKE operators (Source: https://www.w3schools.com/sql/sql_like.asp)

We will see some examples that will be using the Customers table shown below.

https://www.w3schools.com/sql/sql_like.asp

234 | Page

Table 13 - Customers table in LIKE examples (Source: https://www.w3schools.com/sql/sql_like.asp)

Example 1: Selects all customers with a Customer Name that starts with ‘a’.

SELECT * FROM Customers

WHERE CustomerName LIKE 'a%';

Example 2: Selects all Customer names ending with ‘a’.

SELECT * FROM Customers

WHERE CustomerName LIKE '%a';

Example 3: Selects all Customer names that contain ‘or’ in their name in any position.

SELECT * FROM Customers

WHERE CustomerName LIKE '%or%';

Example 4: Selects all Customer names that contain ‘r’ in the second position.

SELECT * FROM Customers

WHERE CustomerName LIKE '_r%';

Example 5: Selects all Customer names that begin with ‘a’ and have at least three

characters in length.

SELECT * FROM Customers

WHERE CustomerName LIKE 'a__%';

Example 6: Selects all Customer names that begin with ‘a’ and end with ‘o’.

SELECT * FROM Customers

WHERE CustomerName LIKE 'a%o';

https://www.w3schools.com/sql/sql_like.asp

235 | Page

Example 7: Selects all Customer names that do not begin with ‘a’.

SELECT * FROM Customers

WHERE CustomerName LIKE 'a%';

SQL Wildcards

A wildcard character substitutes one or more characters in a string. It is used with the

LIKE operator.

The LIKE operator is also used in a WHERE clause to search for a specified pattern in

a column, as we have seen in the previous subsection.

Wildcards in MS Access

Table 14 – Wildcards in Access (Source: https://www.w3schools.com/sql/sql_wildcards.asp)

Wildcards in SQL Server

Table 15 – Wildcards in SQL Server (Source: https://www.w3schools.com/sql/sql_wildcards.asp)

Wildcards can be used in combination; look at some examples at the table below:

https://www.w3schools.com/sql/sql_wildcards.asp
https://www.w3schools.com/sql/sql_wildcards.asp

236 | Page

Table 16 - Examples of Wildcards with % and ‘_’ (Source: https://www.w3schools.com/sql/sql_wildcards.asp)

Let’s see some examples with the Customers table.

Table 17 - Customers table in WILDCARDS example (Source: https://www.w3schools.com/sql/sql_wildcards.asp)

Examples with the % Wildcard

In this example, we are selecting all customers with a City starting with “ber”:

SELECT * FROM Customers

WHERE City LIKE 'ber%';

In the following example, we are selecting all customers with a City containing “es”:

SELECT * FROM Customers

WHERE City LIKE '%es%';

Examples with the _ Wildcard

Here, we are selecting all customers with a City starting with any character followed by

“ondon”:

SELECT * FROM Customers

https://www.w3schools.com/sql/sql_wildcards.asp
https://www.w3schools.com/sql/sql_wildcards.asp

237 | Page

WHERE City LIKE '_ondon';

In this example, we are again selecting all customers with a City starting with ‘L’, followed

by any character, followed by "n", followed by any character, followed by "on":

SELECT * FROM Customers

WHERE City LIKE 'L_n_on';

Examples with the [charlist] Wildcard

Here, we are selecting all customers with a City starting with ‘b’,’ s’, or ‘p’:

SELECT * FROM Customers

WHERE City LIKE '[bsp]%';

In the following example, we are selecting all customers with City starting with ‘a’, ‘b’, or

‘c’:

SELECT * FROM Customers

WHERE City LIKE '[a-c]%';

Examples with the [!charlist] Wildcard

The exclamation mark shows characters that do not contain a specified string. For

example, we want to select all customers with a City that does not start with ‘b’, ‘s’, or

‘p’:

SELECT * FROM Customers

WHERE City LIKE '[!bsp]%';

As an alternative, we can use the following:

SELECT * FROM Customers

WHERE City NOT LIKE '[bsp]%';

238 | Page

SQL In

The IN operator is used to specify multiple values in a WHERE clause. It can be

considered as satisfying various conditions.

Syntax 1:

SELECT column_name(s)

FROM table_name

WHERE column_name IN (value1, value2, ...);

Syntax 2:

SELECT column_name(s)

FROM table_name

WHERE column_name IN (SELECT STATEMENT);

There are two ways to use the IN operator, as you have seen.

Suppose that we have a table called “Customers” containing the following columns:

CustomerID, CustomerName, ContactName, Address, City, PostalCode and Country.

Table 18 - Customers Table in IN operator example (Source: https://www.w3schools.com/sql/sql_in.asp)

https://www.w3schools.com/sql/sql_in.asp

239 | Page

As an example, we want to select all the customers that are located in Germany, France

or UK:

SELECT * FROM Customers

WHERE Country IN (‘Germany’, ‘France’, ‘UK’)

Another example is selecting all the customers that are not located in Germany, France

or the UK:

SELECT * FROM Customers

WHERE Country NOT IN (‘Germany’, ‘France’, ‘UK’)

Let’s also consider a third example where we want to select customers that are from the

same countries as the suppliers:

SELECT * FROM Customers

WHERE Country IN (SELECT Country FROM Suppliers)

SQL Between

The BETWEEN operator provides a range of values to select from. The values can be

text, numbers or dates. The BETWEEN operator includes the starting and end values.

Syntax:

SELECT column_name(s)

FROM table_name

WHERE column_name BETWEEN value1 AND value2;

Let’s say that we have the following table, which contains information on different

products.

240 | Page

Table 19 - BETWEEN operator example (Source: https://www.w3schools.com/sql/sql_between.asp)

There will be a series of examples with the following operators: BETWEEN, NOT

BETWEEN, BETWEEN with IN, BETWEEN and NOT BETWEEN with text values and

BETWEEN dates.

BETWEEN Example: Selects all products with a price range of 10 to 20.

SELECT * FROM Products

WHERE Price BETWEEN 10 AND 20;

NOT BETWEEN Example: Shows all the products outside the range that we set in the

previous example.

SELECT * FROM Products

WHERE Price NOT BETWEEN 10 AND 20;

BETWEEN with IN Example: Selects all products with a price range of 10 to 20 and

does not show products with CategoryID 1, 2, or 3.

SELECT * FROM Products

WHERE Price BETWEEN 10 AND 20

AND CategoryID NOT IN (1,2,3);

BETWEEN with text values Example: Selects all products with a ProductName

between Carnarvon Tigers and Mozzarella di Giovanni.

SELECT * FROM Products

https://www.w3schools.com/sql/sql_between.asp

241 | Page

WHERE ProductName BETWEEN 'Carnarvon Tigers' AND 'Mozzarella di Giovanni'

ORDER BY ProductName;

NOT BETWEEN with text values Example: Selects all products with a ProductName

NOT between Carnarvon Tigers and Mozzarella di Giovanni.

SELECT * FROM Products

WHERE ProductName NOT BETWEEN 'Carnarvon Tigers' AND 'Mozzarella di

Giovanni'

ORDER BY ProductName;

Assume that we have the following table that contains information on different Orders:

Table 20 - BETWEEN operator example (Source: https://www.w3schools.com/sql/sql_between.asp)

BETWEEN Dates Example: Selects all orders with an OrderDate between '01-July-

1996' and '31-July-1996'.

There are two ways that this can be done, by either using a hashtag (#) or quote marks

(‘’):

SELECT * FROM Orders

WHERE OrderDate BETWEEN #07/01/1996# AND #07/31/1996#;

OR

SELECT * FROM Orders

https://www.w3schools.com/sql/sql_between.asp

242 | Page

WHERE OrderDate BETWEEN '1996-07-01' AND '1996-07-31';

SQL Aliases

Aliases assign a temporary name to a table or a column within a table. An alias exists

only for the duration of a query, and it is often used to make column names more

readable. An alias is created by using the keyword AS.

Syntax for column alias:

SELECT column_name AS alias_name

FROM table_name;

Syntax for table alias:

SELECT column_name(s)

FROM table_name AS alias_name;

Column Aliases

Let’s see an example that creates two aliases, one for each column:

SELECT CustomerID AS ID, CustomerName AS Customer

FROM Customers;

Another example creates two aliases again:

SELECT CustomerName AS Customer, ContactName AS [Contact Person]

FROM Customers;

Note that it is put in square brackets ([]) because the alias contains spaces. Quotation

marks can be used as an alternative to square brackets.

243 | Page

You also have the option of creating an alias that contains one or more columns, let’s

look at the example below to see how it works:

SELECT CustomerName, Address + ', ' + PostalCode + ' ' + City + ', ' + Country AS

Address

FROM Customers;

The above statement changes a little bit in MySQL:

SELECT CustomerName, CONCAT(Address,', ',PostalCode,', ',City,', ',Country) AS

Address

FROM Customers;

Table Aliases

The following example selects all the orders from the customer table with CustomerID=4

(Around the Horn).

Here aliases are used to shorten the query:

SELECT o.OrderID, o.OrderDate, c.CustomerName

FROM Customers AS c, Orders AS o

WHERE c.CustomerName='Around the Horn' AND c.CustomerID=o.CustomerID;

A query without aliases would look something like this:

SELECT Orders.OrderID, Orders.OrderDate, Customers.CustomerName

FROM Customers, Orders

WHERE Customers.CustomerName='Around the Horn' AND

Customers.CustomerID=Orders.CustomerID;

SQL Joins

A JOIN clause combines rows from two or more tables based on a related column found

in both tables.

Let’s look at the Orders table and the Customers table:

244 | Page

Tables 21 & 22 - Orders and Customers Tables in JOIN example (Source:

https://www.w3schools.com/sql/sql_join.asp)

If you look at the two tables, you will notice a common column called the CustomerID.

Based on the common column, we can create an SQL statement that uses an INNER

JOIN, which selects records that have matching values in both tables.

Example:

SELECT Orders.OrderID, Customers.CustomerName, Orders.OrderDate

FROM Orders

INNER JOIN Customers ON Orders.CustomerID=Customers.CustomerID;

This command will create something like the following table:

Table 23 - JOIN example (Source: https://www.w3schools.com/sql/sql_join.asp)

There are four different joins in SQL:

1. (INNER) JOIN: Returns records that have matching values in both tables;

2. LEFT (OUTER) JOIN: Returns all records from the left table and the

corresponding matched records from the right table;

3. RIGHT (OUTER) JOIN: Returns all records from the right table and the

corresponding matched records from the left table;

4. FULL (OUTER) JOIN: Returns all records when there is a match in either the left

or the right table.

https://www.w3schools.com/sql/sql_join.asp
https://www.w3schools.com/sql/sql_join.asp

245 | Page

Figure 1 - Different types of JOINS (Source: https://www.w3schools.com/sql/sql_join.asp)

SQL Inner Join

The INNER JOIN keyword selects records that have matching values in both tables.

Syntax:

SELECT column_name(s)

FROM table1

INNER JOIN table2

ON table1.column_name = table2.column_name;

The same tables as the example in the previous subsection are used to perform an inner

join.

Tables 24 & 25 - Orders and Customers Tables in JOIN example (Source:

https://www.w3schools.com/sql/sql_join_inner.asp)

https://www.w3schools.com/sql/sql_join.asp
https://www.w3schools.com/sql/sql_join_inner.asp

246 | Page

In this example, we want to retrieve the names of customers and their corresponding

Order IDs:

SELECT Orders.OrderID, Customers.CustomerName

FROM Orders

INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID;

Note that the INNER JOIN keyword will select all rows from both tables that match. If

records in the Orders table do not have matches in the Customers table, they will not

be selected.

In the following example, we will see how to join three tables that contain customer and

shipper information:

SELECT Orders.OrderID, Customers.CustomerName, Shippers.ShipperName

FROM ((Orders

INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID)

INNER JOIN Shippers ON Orders.ShipperID = Shippers.ShipperID);

SQL Left Join

The LEFT JOIN keyword returns all records from the left table and the matching records

from the right table. If no matches are found, zero records from the right table will be

shown as a result.

Syntax:

SELECT column_name(s)

FROM table1

LEFT JOIN table2

ON table1.column_name = table2.column_name;

Note that the LEFT JOIN is called LEFT OUTER JOIN in some databases.

247 | Page

As an example, let’s select all customers and any orders that these customers might

have:

SELECT Customers.CustomerName, Orders.OrderID

FROM Customers

LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID

ORDER BY Customers.CustomerName;

Note that all records from the left table Customers will be returned, even if there are no

matches in the right table Orders.

SQL Right Join

The RIGHT JOIN keyword essentially follows the same logic from the right side instead

of the left one as described in the previous subsection.

The RIGHT JOIN will return all records from the right table and the matching records

from the left table, if there are any.

Syntax:

SELECT column_name(s)

FROM table1

RIGHT JOIN table2

ON table1.column_name = table2.column_name;

Consider the following two tables, Orders and Employees tables:

248 | Page

Table 26 - Orders Table in RIGHT JOIN example (Source: https://www.w3schools.com/sql/sql_join_right.asp)

Table 27 - Employees Table in RIGHT JOIN example (Source: https://www.w3schools.com/sql/sql_join_right.asp)

The following example will return all employees and any orders that they might have

placed:

SELECT Orders.OrderID, Employees.LastName, Employees.FirstName

FROM Orders

RIGHT JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID

ORDER BY Orders.OrderID;

Note that the RIGHT JOIN keyword will return all records from the right table,

Employees, even if there are no matches found in the left table, Orders. The same logic

applies as in the LEFT JOIN that we saw earlier.

SQL Full Join

The FULL JOIN keyword returns all records when matching records are found in either

the right or the left table.

Note that FULL OUTER JOIN and FULL JOIN are the same thing and a FULL JOIN can

potentially return large result-sets.

Syntax:

https://www.w3schools.com/sql/sql_join_right.asp
https://www.w3schools.com/sql/sql_join_right.asp

249 | Page

SELECT column_name(s)

FROM table1

FULL OUTER JOIN table2

ON table1.column_name = table2.column_name

WHERE condition;

Consider the following two tables, the Orders table and the Customers table:

Table 28 - Orders Table in FULL JOIN example (Source: https://www.w3schools.com/sql/sql_join_full.asp)

Table 29 - Customers Table in FULL JOIN example (Source: https://www.w3schools.com/sql/sql_join_full.asp)

An example that selects all customers and orders:

SELECT Customers.CustomerName, Orders.OrderID

FROM Customers

FULL OUTER JOIN Orders ON Customers.CustomerID=Orders.CustomerID

ORDER BY Customers.CustomerName;

The result of this full join can look something like this:

https://www.w3schools.com/sql/sql_join_full.asp
https://www.w3schools.com/sql/sql_join_full.asp

250 | Page

Table 30 - FULL JOIN on Customers and Orders Tables Example (Source:

https://www.w3schools.com/sql/sql_join_full.asp)

Here we can see that it returns all matching records from both tables even if no common

matches are found between the two tables. In the case of no common matches, a null

value is assigned.

SQL Self Join

A self-join is considered a regular join, but the table is joined within.

Syntax:

SELECT column_name(s)

FROM table1 T1, table1 T2

WHERE condition;

T1 and T2 are aliases used for the same table.

Let’s take the Customers table as an example:

Table 31 - Customers Table in SELF JOIN example (Source: https://www.w3schools.com/sql/sql_join_self.asp)

Here, we want to select customers that are from the same city:

https://www.w3schools.com/sql/sql_join_full.asp
https://www.w3schools.com/sql/sql_join_self.asp

251 | Page

SELECT A.CustomerName AS CustomerName1, B.CustomerName AS

CustomerName2, A.City

FROM Customers A, Customers B

WHERE A.CustomerID <> B.CustomerID

AND A.City = B.City

ORDER BY A.City;

SQL Union

The UNION operator is used to combine the result-set of two or more SELECT

statements.

There are a few requirements to enable a UNION:

1. Every SELECT statement within the UNION must have the same number of

columns;

2. The columns must have similar data types;

3. The columns in every SELECT statement must be in the same order.

Syntax:

SELECT column_name(s) FROM table1

UNION

SELECT column_name(s) FROM table2;

* Note that the UNION operator selects only distinct values by default.

To allow duplicate values, use UNION ALL:

SELECT column_name(s) FROM table1

UNION ALL

SELECT column_name(s) FROM table2;

* Note that the column names in the two SELECT statements are usually equal.

252 | Page

Now let’s see some examples of UNION, UNION ALL, and UNION with where

statements to understand a little bit better how we can use it.

Table 32 - Customers Table in UNION example (Source: https://www.w3schools.com/sql/sql_union.asp)

Table 33 - Suppliers Table in UNION example (Source: https://www.w3schools.com/sql/sql_union.asp)

The first example is used to return distinct cities from both tables shown above:

SELECT City FROM Customers

UNION

SELECT City FROM Suppliers

ORDER BY City;

Since we are using UNION, the suppliers from the same city will only be listed once. If

you want to see the duplicated values, use UNION ALL.

The following example will do precisely that and return any duplicate values from both

tables:

SELECT City FROM Customers

UNION ALL

SELECT City FROM Suppliers

ORDER BY City;

https://www.w3schools.com/sql/sql_union.asp
https://www.w3schools.com/sql/sql_union.asp

253 | Page

The following example will return the distinct German cities from both the “Customers”

and “Suppliers” tables with the use of WHERE:

SELECT City, Country FROM Customers

WHERE Country = ‘Germany’

UNION

SELECT City, Country FROM Customers

WHERE Country = ‘Germany’

ORDER BY City;

This example is similar to the previous one, but we will be returning possible duplicate

values:

SELECT City, Country FROM Customers

WHERE Country = ‘Germany’

UNION ALL

SELECT City, Country FROM Customers

WHERE Country = ‘Germany’

ORDER BY City;

Another example will list all customers and suppliers:

SELECT 'Customer' AS Type, ContactName, City, Country

FROM Customers

UNION

SELECT 'Supplier', ContactName, City, Country

FROM Suppliers;

See that we used AS here to create an alias for the given query that will disappear after

completing it.

254 | Page

SQL Group By

The GROUP BY statement groups rows with the same values into summary rows. As

an example, consider that you want to find the number of customers in each country.

Also, the GROUP BY statement is often used with aggregate functions such as

COUNT(), MAX(), MIN(), SUM(), AVG() to group the result by one or more columns.

Syntax:

SELECT column_name(s)

FROM table_name

WHERE condition

GROUP BY column_name(s)

ORDER BY column_name(s);

We will be using the Customers table, shown below, in our examples.

Table 34 - Customers Table in GROUP BY example (Source: https://www.w3schools.com/sql/sql_groupby.asp)

As a first example, let’s list the number of customers found in each county:

SELECT COUNT(CustomerID), Country

FROM Customers

GROUP BY Country;

As a second example, we will again list the number of customers in each country, but in

descending order:

SELECT COUNT(CustomerID), Country

FROM Customers

https://www.w3schools.com/sql/sql_groupby.asp

255 | Page

GROUP BY Country;

ORDER BY COUNT(CustomerID) DESC;

In the following example, we will use GROUP BY with JOIN by using the Orders and

Shippers tables.

Table 35 - Orders Table in GROUP BY example (Source: https://www.w3schools.com/sql/sql_groupby.asp)

Table 36 - Shippers Table in GROUP BY example (Source: https://www.w3schools.com/sql/sql_groupby.asp)

In this example, we will list the number of orders sent by each shipper:

SELECT Shippers.ShipperName, COUNT(Orders.OrderID) AS NumberOfOrders

FROM Orders

LEFT JOIN Shippers ON Orders.ShipperID = Shippers.ShipperID

GROUP BY ShipperName;

See here we started by selecting the Shippers’ names in the Shippers table and counted

the orders based on their OrderID saved as an alias.

Then we performed a LEFT JOIN to join the Shippers table (table 2) on the Orders table

(table 1) and group them by the Shipper’s name.

SQL Having

The HAVING clause was added to SQL because WHERE cannot be used with

aggregate functions.

https://www.w3schools.com/sql/sql_groupby.asp
https://www.w3schools.com/sql/sql_groupby.asp

256 | Page

Syntax:

SELECT column_name(s)

FROM table_name

WHERE condition

GROUP BY column_name(s)

HAVING condition

ORDER BY column_name(s);

Table 37 - Customers Table in HAVING example (Source: https://www.w3schools.com/sql/sql_having.asp)

In this example, we will be using the Customers table once again. Here, we want to list

the number of customers found in each country, but we also want to include countries

that have more than five customers.

SELECT COUNT(CustomerID), Country

FROM Customers

GROUP BY Country

HAVING COUNT(CustomerID) > 5;

In this example, we want to list the number of customers per country again and include

countries with more than five customers in descending order.

SELECT COUNT(CustomerID), Country

FROM Customers

GROUP BY Country

https://www.w3schools.com/sql/sql_having.asp

257 | Page

HAVING COUNT(CustomerID) > 5

ORDER BY COUNT(CustomerID) DESC;

Let’s try a few other examples by combining what we have learnt so far.

We will use the Orders and Employees tables in the following two examples.

Table 38 - Orders Table in HAVING example (Source: https://www.w3schools.com/sql/sql_having.asp)

Table 39 - Orders Table in HAVING example (Source: https://www.w3schools.com/sql/sql_having.asp)

The following example will list the employees that have registered more than ten orders:

SELECT Employees.LastName, COUNT(Orders.OrderID) AS NumberOfOrders

FROM (Orders

INNER JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID)

GROUP BY LastName

HAVING COUNT(Orders.OrderID) > 10;

In this example, we will list the employees “Davolio” or “Fuller” if they have registered

orders more than 25 times:

SELECT Employees.LastName, COUNT(Orders.OrderID) AS NumberOfOrders

FROM (Orders

INNER JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID)

https://www.w3schools.com/sql/sql_having.asp
https://www.w3schools.com/sql/sql_having.asp

258 | Page

WHERE LastName = ‘Davolio’ OR LastName = ‘Fuller’

GROUP BY LastName

HAVING COUNT(Orders.OrderID) > 25;

SQL Select Into

The SELECT INTO statement copies data from one table into a new table.

Syntax to copy all columns into a new table:

SELECT *

INTO newtable [IN externaldb]

FROM oldtable

WHERE condition;

Syntax to copy only some columns into a new table:

SELECT column1, column2, column3, ...

INTO newtable [IN externaldb]

FROM oldtable

WHERE condition;

The new table will keep the column names and types the same as the old table. You

can create new columns with the AS clause.

Example of creating a backup copy of Customers:

SELECT * INTO CustomersBackup2017

FROM Customers;

Example of using IN clause to copy the table into a new table in another database:

SELECT * INTO CustomersBackup2017 IN 'Backup.mdb'

FROM Customers;

Example to copy only a few columns into a new table:

259 | Page

SELECT CustomerName, ContactName INTO CustomersBackup2017

FROM Customers;

Example to copy only the German customers into a new table:

SELECT * INTO CustomersGermany

FROM Customers

WHERE Country = 'Germany';

Example to copy data from multiple tables into a new table:

SELECT Customers.CustomerName, Orders.OrderID

INTO CustomersOrderBackup2017

FROM Customers

LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID;

SELECT INTO can also be used to create a new, empty table using the schema of

another.

To do that, add a WHERE clause that returns no data:

SELECT * INTO newtable

FROM oldtable

WHERE 1 = 0;

SQL Insert Into Select

The INSERT INTO SELECT statement copies data from one table and inserts it into

another. It requires the data types in the source and target table to match.

Syntax to copy all columns from one table to another:

INSERT INTO table2

SELECT * FROM table1

WHERE condition;

260 | Page

Syntax to copy only some columns from one table to another:

INSERT INTO table2 (column1, column2, column3, ...)

SELECT column1, column2, column3, ...

FROM table1

WHERE condition;

Table 40 - Customers Table in INSERT INTO SELECT example (Source:

https://www.w3schools.com/sql/sql_insert_into_select.asp)

Table 41 - Suppliers Table in INSERT INTO SELECT example (Source:

https://www.w3schools.com/sql/sql_insert_into_select.asp)

We will be using the Customers and Suppliers tables, shown above, in the following

examples.

The first example copies Suppliers into Customers (note that the columns that are not

filled with data will contain null values):

INSERT INTO Customers (CustomerName, City, Country)

SELECT SupplierName, City, Country FROM Suppliers;

This example copies Suppliers into Customers to fill all columns:

INSERT INTO Customers (CustomerName, ContactName, Address, City, PostalCode,

Country)

SELECT SupplierName, ContactName, Address, City, PostalCode, Country FROM

Suppliers;

https://www.w3schools.com/sql/sql_insert_into_select.asp
https://www.w3schools.com/sql/sql_insert_into_select.asp

261 | Page

The third example copies only the German suppliers into Customers:

INSERT INTO Customers (CustomerName, City, Country)

SELECT SupplierName, City, Country FROM Suppliers

WHERE Country='Germany';

SQL Case

The CASE statement goes through a series of conditions and returns a value when the

first condition is met. Think of it as an if, then, else statement.

When one condition is found true, it will stop going through the loop. If no conditions are

found true, it will return the value in the ELSE clause.

Note that if there isn’t an ELSE clause and no conditions are found true, it will return

NULL.

Syntax:

CASE

 WHEN condition1 THEN result1

 WHEN condition2 THEN result2

 WHEN conditionN THEN resultN

 ELSE result

END;

262 | Page

Table 42 - Orders Table in CASE example (Source: https://www.w3schools.com/sql/sql_case.asp)

In the following examples, we will use the Orders table.

The first example will go through a series of conditions and return a value when the first

condition is met:

SELECT OrderID, Quantity,

CASE

 WHEN Quantity > 30 THEN 'The quantity is greater than 30'

 WHEN Quantity = 30 THEN 'The quantity is 30’

 ELSE 'The quantity is under 30'

END AS QuantityText

FROM OrderDetails;

In this second example, we will order the customers by City. Note that if City is NULL, it

will be ordered by Country.

SELECT CustomerName, City, Country

FROM Customers

ORDER BY

 (CASE

 WHEN City IS NULL THEN Country

 ELSE City

END);

https://www.w3schools.com/sql/sql_case.asp

263 | Page

SQL Null Functions

The NULL functions include the following: IFNULL(), ISNULL(), COALESCE(), and

NVL().

Here, we will use the “Products” table:

Table 43 - Products Table in NULL functions example (Source: https://www.w3schools.com/sql/sql_isnull.asp)

Let’s say that the “UnitsOnOrder” column is optional and may contain NULL values.

Example:

SELECT ProductName, UnitPrice * (UnitsInStock + UnitsOnOrder)

FROM Products;

Here we can see that if any of the UnitsOnOrder values are null, the result will also be

null.

Let’s see how we can overcome this issue.

In MySQL, you can use the ISNULL() function that lets you return an alternative value if

an expression is null:

SELECT ProductName, UnitPrice * (UnitsInStock + IFNULL(UnitsOnOrder, 0))

FROM Products;

Or we can use the COALESCE() function:

SELECT ProductName, UnitPrice * (UnitsInStock + COALESCE(UnitsOnOrder, 0))

FROM Products;

https://www.w3schools.com/sql/sql_isnull.asp

264 | Page

In SQL Server, the ISNULL() function does the same thing as in MySQL:

SELECT ProductName, UnitPrice * (UnitsInStock + IFNULL(UnitsOnOrder, 0))

FROM Products;

In MS Access IsNull() function returns TRUE(-1) if the expression is a null value,

otherwise FALSE (0):

SELECT ProductName, UnitPrice * (UnitsInStock + IIF(IsNull(UnitsOnOrder), 0,

UnitsOnOrder))

FROM Products;

In Oracle, the NVL() function does the same thing:

SELECT ProductName, UnitPrice * (UnitsInStock + NVL(UnitsOnOrder, 0))

FROM Products;

SQL Comments

SQL Comments explain SQL statement sections or prevent their execution.

Note that the examples in this section are not supported in Firefox and Microsoft Edge,

which are Microsoft Access databases. Comments are generally not supported in

Microsoft Access databases.

Single line comments in SQL start with - - (two dashes):

--Select all:

SELECT * FROM Customers;

Or it can be used like this to ignore the end of the line:

SELECT * FROM Customers -- WHERE City='Berlin';

Or to ignore a statement:

--SELECT * FROM Customers;

SELECT * FROM Products;

265 | Page

Multiple-line comments start with /* and end with */. Any text written between these two

will be ignored.

Example:

/*Select all the columns

of all the records

in the Customers table:*/

SELECT * FROM Customers;

To ignore part of a statement, you can also use /**/.

Example 1:

SELECT CustomerName, /*City,*/ Country FROM Customers;

Example 2:

SELECT * FROM Customers WHERE (CustomerName LIKE 'L%'

OR CustomerName LIKE 'R%' /*OR CustomerName LIKE 'S%'

OR CustomerName LIKE 'T%'*/ OR CustomerName LIKE 'W%')

AND Country='USA'

ORDER BY CustomerName;

266 | Page

SQL Operators

Arithmetic Operators used in SQL:

Table 44 - Arithmetic Operators (Source: https://www.w3schools.com/sql/sql_operators.asp)

Bitwise operators used in SQL:

Table 45 – Bitwise operators (Source: https://www.w3schools.com/sql/sql_operators.asp)

Comparison operators used in SQL:

https://www.w3schools.com/sql/sql_operators.asp
https://www.w3schools.com/sql/sql_operators.asp

267 | Page

Table 46 – Comparison operators (Source: https://www.w3schools.com/sql/sql_operators.asp)

Compound operators used in SQL:

Table 47 - Compound operators (Source: https://www.w3schools.com/sql/sql_operators.asp)

https://www.w3schools.com/sql/sql_operators.asp
https://www.w3schools.com/sql/sql_operators.asp

268 | Page

Logical operators used in SQL:

Table 48 - Logical operators (Source: https://www.w3schools.com/sql/sql_operators.asp)

https://www.w3schools.com/sql/sql_operators.asp

269 | Page

4.2. SQL Databases

As we have mentioned in the previous section that was dedicated to the basic

statements used in SQL, this programming language is mainly used for relational

databases. Therefore, in this section, we will learn how to create a database, modify it,

and manipulate it with SQL.

Let’s start simple, and we will build into slightly more complicated statements.

SQL Create DB

The CREATE DATABASE statement creates a new SQL database.

Syntax:

CREATE DATABASE DatabaseName;

Note: Always remember that the name of the database should be unique within the

Relational Database Management System (RDMS) that you are using, and make sure

that you have admin privileges before creating any database.

Let’s say you want to create a test database. You would use the following statement:

CREATE DATABASE testDB;

SQL Drop DB

The DROP DATABASE statement deletes an existing SQL database.

DROP DATABASE DatabaseName;

Before you delete the database, make sure that you don’t need any of the information

that it contains because it completely deletes it.

Remember the database that we just created called “testDB”? Now we are going to

delete it.

270 | Page

Example:

DROP DATABASE testDB;

SQL Backup DB

The BACKUP DATABASE statement does a complete backup on an existing SQL

database.

To use this statement, you need to provide two things: the name of the database and

the file path.

BACKUP DATABASE DatabaseName

TO DISK = ‘filepath’

Example:

BACKUP DATABASE testDB

TO DISK = 'D:\backups\testDB.bak';

Note: To avoid technical problems, it is better to back up the database to a different

drive than the one the existing database is on.

There is also another option where you perform a differential backup based on changes

that have been made since the last complete database backup. This type of backup also

reduces the backup time.

To do this, you follow this syntax:

BACKUP DATABASE DatabaseName

TO DISK = 'filepath'

WITH DIFFERENTIAL;

Example:

BACKUP DATABASE testDB

TO DISK = 'D:\backups\testDB.bak'

WITH DIFFERENTIAL;

271 | Page

SQL Create Table

The CREATE TABLE statement creates a new table in a database.

Syntax:

CREATE TABLE table_name (

 column1 datatype,

 column2 datatype,

 column3 datatype,

 …….

);

In this statement, you need to specify the names of the columns and the type of data

that the column will contain.

There are many data types such as integer, date or varchar. Depending on the type of

data that you want to store, you choose the most suitable option. For instance, if you

have a column named “Date of Birth”, then you would probably choose the Date as the

data type.

Example:

CREATE TABLE Persons (

 PersonID int,

 LastName varchar(255),

 FirstName varchar(255),

 Address varchar(255),

 City varchar(255)

);

This example will create a table with the name Persons and will contain 5 columns.

272 | Page

The PersonID will contain an integer (int); the columns LastName, FirstName, Address,

and City will contain characters with a maximum length of 255.

The table will look something like this without any data:

Table 49 - Empty table in CREATE TABLE Example (Source:

https://www.w3schools.com/sql/sql_create_table.asp)

You can also create a table by using another table and choosing which columns you

want in the new table. Keep in mind that the data of the existing table will fill the entries

of the new table.

The syntax is as follows:

CREATE TABLE new_table_name AS

SELECT column1, column2,...

FROM existing_table_name

WHERE;

As you have learnt in the previous section:

• SELECT specifies the columns from the existing table,

• FROM specifies the name of the existing table, and

• WHERE can be used if you want a set of records that fulfil a specified condition.

Example:

CREATE TABLE TestTable AS

SELECT customername, contactname

FROM customers;

https://www.w3schools.com/sql/sql_create_table.asp

273 | Page

SQL Drop Table

Similar to the DROP DATABASE statement that we saw earlier, the DROP TABLE

statement deletes an existing table in a database.

Remember that you need to be sure that you do not need any of the information

contained in a table before deleting it.

Syntax:

DROP TABLE TableName;

Example:

DROP TABLE Persons;

You can also choose to delete the data contained in a table, but not the table itself.

Maybe you created a new table from an existing table that has the structure that you

want, but you want to add completely new entries. That is where TRUNCATE TABLE is

useful.

Syntax:

TRUNCATE TABLE TableName;

Example:

TRUNCATE TABLE Persons;

SQL Alter Table

The ALTER TABLE statement can add, delete or modify columns in an existing table.

Also, it can be used to add and drop constraints on an existing table.

Let’s see the syntax of adding a column first:

ALTER TABLE TableName

ADD column_name datatype;

274 | Page

This is familiar to how we created a table by specifying the name of the column and the

type of data to be contained in that column.

Example:

ALTER TABLE Customers

ADD Email varchar(255);

To delete a column in a table, as we have seen before, you use the DROP statement.

Keep in mind that some database systems do not allow for users to delete a column.

Syntax:

ALTER TABLE TableName

DROP COLUMN ColumnName;

As an example, let’s delete the column that we created:

ALTER TABLE Customers

DROP COLUMN Email;

To change the data type of a column, you can use the following statements depending

on the RDBMS that you are using:

• ALTER COLUMN (for SQL Server/MS Access);

• MODIFY COLUMN (for My SQL/ Oracle prior to version 10G);

• MODIFY (for Oracle version 10G and later).

Syntax:

ALTER TABLE TableName

ALTER COLUMN ColumnName datatype;

Note that the second statement is the one that changes depending on the RDBMS that

you are using from ALTER COLUMN to MODIFY COLUMN or MODIFY. The rest stays

the same.

275 | Page

Let’s see an example to understand this statement a bit better. The table underneath is

the “Persons” table and contains information about different people.

Table 50 - ALTER TABLE Example (Source: https://www.w3schools.com/sql/sql_alter.asp)

As an example, let’s say that we wanted to add a column named “DateofBirth” in this

table. We will use the following statement:

ALTER TABLE Persons

ADD DateofBirth date;

The new column that we added to the table has the data type of date, which means that

it stores data in a date format. Underneath, you can see the table with the new column

added.

Table 51 - ALTER TABLE Example (Source: https://www.w3schools.com/sql/sql_alter.asp)

However, what if you changed your mind and wanted to change the data type of the

new column, then you can use the ALTER COLUMN statement. For example, we can

change the newly added column’s type from date to year. To do this, use the following

statement:

ALTER TABLE Persons

ALTER COLUMN DateofBirth year;

The year data type holds a year in two- or four-digits format.

https://www.w3schools.com/sql/sql_alter.asp
https://www.w3schools.com/sql/sql_alter.asp

276 | Page

To delete the column that we just altered, we use the DROP COLUMN statement.

ALTER TABLE Persons

DROP COLUMN DateofBirth;

Our table will go back looking the way it did in the beginning.

Table 52 - ALTER TABLE Example (Source: https://www.w3schools.com/sql/sql_alter.asp)

SQL Constraints

SQL Constraints are used when the table is created with the statement CREATE TABLE

or after the table is created with the statement ALTER TABLE.

Syntax:

CREATE TABLE table_name (

 column1 datatype constraint,

 column2 datatype constraint,

 column3 datatype constraint,

);

Constraints are used to specify a set of rules and restrictions that apply to a column or

a table. They are used to ensure the integrity, accuracy, and reliability of the data. If the

constraints are applied to a table, then all columns need to adhere to these constraints.

The following constraints are the ones that are most commonly used:

● NOT NULL

https://www.w3schools.com/sql/sql_alter.asp

277 | Page

● UNIQUE

● PRIMARY KEY

● FOREIGN KEY

● CHECK

● DEFAULT

● CREATE INDEX

We will go through each of these constraints to explain their usage and syntax with

examples.

SQL Not Null

In SQL, columns can hold null values by default. The NOT NULL constraint is used to

avoid null values in columns. This is particularly important to ensure that when a new

entry is added to a table all the necessary fields are filled.

As an example, let’s say that we want to create a table named “Persons” and we want

to ensure that the columns “ID”, “LastName”, and “FirstName” do not hold any null

values:

CREATE TABLE Persons (

 ID int NOT NULL,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255) NOT NULL,

 Age int

);

If, for some reason, you want to alter an already existing table to add constraints, you

can use the following statement:

ALTER TABLE Persons

MODIFY Age int NOT NULL;

278 | Page

SQL Unique

The UNIQUE constraint is used to ensure that all values stored in a column are unique

among the rows in a table. To make this clearer, think of the variable ID. You wouldn’t

want two people to have the same ID, therefore you would use the constraint UNIQUE

on this occasion.

SQL Server / Oracle / MS Access:

CREATE TABLE Persons (

 ID int NOT NULL UNIQUE,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int

);

My SQL:

CREATE TABLE Persons (

 ID int NOT NULL,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int,

 UNIQUE (ID)

);

As you can see, depending on the RDBMS that you are using, there are a few

adjustments on where the UNIQUE constraint is put in the code.

If you want to name or define a UNIQUE constraint on multiple columns, use the

following:

CREATE TABLE Persons (

 ID int NOT NULL,

279 | Page

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int,

 CONSTRAINT UC_Person UNIQUE (ID,LastName)

);

You can also add a UNIQUE constraint after the table has been created by using the

ALTER TABLE statement that we learnt earlier.

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons

ADD UNIQUE (ID);

If you also want to name and define a UNIQUE constraint on multiple already existing

columns, you use the following statement:

ALTER TABLE Persons

ADD CONSTRAINT UC_Persons UNIQUE (ID, LastName);

To delete the UNIQUE constraint, you can use the following statement:

My SQL:

ALTER TABLE Persons

DROP INDEX UC_Persons;

SQL Server/Oracle/ MS Access:

ALTER TABLE Persons

DROP CONSTRAINT UC_Persons;

SQL Primary Key

The PRIMARY KEY constraint is used to uniquely identify each row or record in a table.

Note that primary keys must contain unique values, but cannot contain null values.

280 | Page

A table can only have ONE primary key and that primary key can consist of one or

multiple columns.

SQL Server/Oracle/MS Access:

CREATE TABLE Persons (

 ID int NOT NULL PRIMARY KEY,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int

);

MySQL:

CREATE TABLE Persons (

 ID int NOT NULL,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int,

 PRIMARY KEY (ID)

);

The following example allows you to name and define a PRIMARY KEY constraint on

multiple columns:

CREATE TABLE Persons (

 ID int NOT NULL,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int,

 CONSTRAINT PK_Person PRIMARY KEY (ID,LastName)

);

281 | Page

Note that the PRIMARY KEY is still one, but the value of the primary key encompasses

two columns.

You can also create a PRIMARY KEY constraint on an existing table by using the

following statement:

ALTER TABLE Persons

ADD PRIMARY KEY (ID);

To add and define a PRIMARY KEY constraint on an existing table, use the following

statement:

ALTER TABLE Persons

ADD CONSTRAINT PK_Persons PRIMARY KEY (ID, LastName);

To drop a PRIMARY KEY constraint, use the following statements according to your

RDBMS.

MySQL:

ALTER TABLE Persons

DROP PRIMARY KEY;

SQL Server / Oracle / MS Access:

ALTER TABLE Persons

DROP PRIMARY KEY;

SQL Foreign Key

The FOREING KEY represents the columns of a table that are linked to a primary key

in another table. The table that has a foreign key is called the child table, whereas the

table that has the primary key is called the referenced or parent table.

282 | Page

This type of constraint is used to prevent any actions that would destroy links between

parent and child tables.

Let’s consider the following two tables:

Table 53 - Persons table in FOREING KEY Example (Source: https://www.w3schools.com/sql/sql_foreignkey.asp)

Table 54 - Orders table in FOREING KEY Example (Source: https://www.w3schools.com/sql/sql_foreignkey.asp)

These two tables are linked by the column “PersonID” that is found in both tables. Now,

the primary key is located in the Persons table and the foreign key is the “PersonID” in

the Orders table.

The FOREIGN KEY constraint works by preventing the input of invalid data in the foreign

key column, because it is linked with the parent table and its values need to be identical.

To use the FOREIGN KEY constraint when creating a table, you can use the following

statement according to your RDBMS.

SQL Server / Oracle / MS Access:

https://www.w3schools.com/sql/sql_foreignkey.asp
https://www.w3schools.com/sql/sql_foreignkey.asp

283 | Page

CREATE TABLE Orders (

 OrderID int NOT NULL PRIMARY KEY,

 OrderNumber int NOT NULL,

 PersonID int FOREIGN KEY REFERENCES Persons(PersonID)

);

My SQL:

CREATE TABLE Orders (

 OrderID int NOT NULL,

 OrderNumber int NOT NULL,

 PersonID int,

 PRIMARY KEY (OrderID),

 FOREIGN KEY (PersonID) REFERENCES Persons(PersonID)

);

This statement linked the Orders table to the Persons table with the FOREIGN KEY

constraint based on PersonID column.

SQL Check

The CHECK constraint is used to specify the values allowed in a column or in certain

columns of a table based on values found in other columns of the same row.

Example of CHECK constraint on CREATE TABLE

The following example is used to ensure that a person is not under the age of 18, so the

CHECK constraint is added to the “Age” column.

MySQL:

CREATE TABLE Persons (

 ID int NOT NULL,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

284 | Page

 Age int,

 CHECK (Age>=18)

);

SQL Server / Oracle / MS Access:

CREATE TABLE Persons (

 ID int NOT NULL,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int CHECK (Age>=18)

);

If you want to name a CHECK constraint and use the constraint on multiple columns,

you can use the following statement.

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons (

 ID int NOT NULL,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int,

 City varchar(255),

 CONSTRAINT CHK_Person CHECK (Age>=18 AND City= ‘Sandnes’)

);

Example of CHECK constraint on ALTER TABLE

To create a constraint on an already existing table, use the following statement.

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons

ADD CHECK (Age>=18);

To name a constraint and create it on multiple columns, you can use:

285 | Page

ALTER TABLE Persons

ADD CONSTRAINT CHK_Person CHECK (Age>=18 AND City= ‘Sandnes’);

Example of DROP a CHECK constraint

To eliminate a CHECK constraint, you can use the following according to the RDMBS.

SQL Server / Oracle / MS Access:

ALTER TABLE Persons

DROP CONSTRAINT CHK_PersonAge;

MySQL:

ALTER TABLE Persons

DROP CHECK CHK_PersonAge;

SQL Default

The DEFAULT constraint is used to specify a default value for a column. If there are no

other values specified, the default value will be added to all new records.

Example of DEFAULT constraint on CREATE TABLE

The following example adds a default value to the City column when the Persons table

is created:

CREATE TABLE Persons (

 ID int NOT NULL,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int,

 City varchar(255) DEFAULT 'Sandnes'

);

This constraint can also be used to insert system values with functions such as

GETDATE():

286 | Page

CREATE TABLE Orders (

 ID int NOT NULL,

 OrderNumber int NOT NULL,

 OrderDate date DEFAULT GETDATE()

);

Example of DEFAULT constraint on ALTER TABLE

In this example, the column “City” is used to create a DEFAULT constraint when we are

altering an already existing table.

MySQL:

ALTER TABLE Persons

ALTER City SET DEFAULT 'Sandnes';

SQL Server:

ALTER TABLE Persons

ADD CONSTRAINT df_City

DEFAULT 'Sandnes' FOR City;

MS Access:

ALTER TABLE Persons

ALTER COLUMN City SET DEFAULT ‘Sandnes’;

Oracle:

ALTER TABLE Persons

MODIFY City DEFAULT 'Sandnes';

Example of DROP a DEFAULT constraint

MySQL:

ALTER TABLE Persons

ALTER City DROP DEFAULT;

287 | Page

SQL Server / Oracle / MS Access:

ALTER TABLE Persons

ALTER COLUMN City DROP DEFAULT;

SQL Index

The CREATE INDEX statement creates an index on a table. Indexes are useful when

you want to retrieve data more quickly.

Please note that tables with indexes take more time to update in comparison to tables

without. Therefore, it is suggested to only create indexes on columns that are frequently

searched.

To CREATE INDEX on a table where duplicate values are allowed, use the following

syntax:

CREATE INDEX index_name

ON table_name (column1, column2, ...);

To CREATE UNIQUE INDEX on a table where duplicate values are not allowed, use

the following syntax:

CREATE UNIQUE INDEX index_name

ON table_name (column1, column2, ...);

Keep in mind that creating indexes varies from database to database, so always check

the syntax to create one in your database.

Examples of CREATE INDEX

In this example, we are creating an index on the LastName column by specifying the

name idx_lastname:

CREATE INDEX idx_lastname

ON Persons (LastName);

288 | Page

To create an index on a combination of columns, use the following statement:

CREATE INDEX idx_pname

ON Persons (LastName, FirstName);

If you want, you can add more columns in the parenthesis.

Examples of DROP INDEX

If you want to delete an index, use the following statement according to your RDBMS.

MS Access:

DROP INDEX index_name ON table_name;

SQL Server:

DROP INDEX table_name.index_name;

DB2/Oracle:

DROP INDEX index_name;

MySQL:

ALTER TABLE table_name

DROP INDEX index_name;

SQL Auto Increment

Auto-increment is used to generate unique numbers automatically when a new record

is entered into a table. This is usually used on the primary key field in order to ensure

that no one person has the same ID.

This feature uses different syntax in MySQL, SQL Server, Access and Oracle.

Therefore, we will be going through each of these to explain how to use Auto-Increment.

289 | Page

MySQL:

CREATE TABLE Persons (

 Personid int NOT NULL AUTO_INCREMENT,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int,

 PRIMARY KEY (Personid)

);

In MySQL, AUTO_INCREMENT adds the auto-increment feature and by default, the

value set is 1 and it goes up by 1 each time.

If you would like the sequence to start from a different value, use the following statement:

ALTER TABLE Persons AUTO_INCREMENT=100;

If you enter a new record into the Persons table, you will not have to specify a value for

the “PersonID” column since it will be generated automatically:

INSERT INTO Persons (FirstName,LastName)

VALUES ('Lars','Monsen');

SQL Server

We are following the same example as above, where we use the “Personsid” column as

the primary key in the Persons table:

CREATE TABLE Persons (

 Personid int IDENTITY(1,1) PRIMARY KEY,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int

);

290 | Page

In SQL Server, the auto-increment feature uses the keyword IDENTIFY to be activated.

The two values in the parenthesis indicate (starting value, adding value for each new

record). It will start at 1 and go up by 1 each time a new record is entered.

If you wanted to change the starting value to 10 and to add 5 each time a new record is

added, you would write it like this IDENTIFY (10,5).

When entering new records, you do not need to specify the Personsid. It will be

automatically generated as in the example above.

MS Access

CREATE TABLE Persons (

 Personid AUTOINCREMENT PRIMARY KEY,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int

);

MS Access uses AUTOINCREMENT keyword to activate the auto-increment feature.

Similar to the other two, the starting value is one and it adds up by one each time a

record is added.

You can specify different values such as 10 for starting value and 5 for each addition

with AUTOINCREMENT(10,5).

Again, note that each time we add a new record, we do not need to specify the Personid

value. It is generated automatically.

Oracle

In Oracle, the code is a bit trickier. To create an auto-increment field, you need to create

a sequence of numbers:

291 | Page

CREATE SEQUENCE seq_person

MINVALUE 1

START WITH 1

INCREMENT BY 1

CACHE 10;

This sequence creates a sequence object named “seq_person”, sets the minimum value

to start from (which is 1 in this instance), then specifies the increment by 1. The cache

specifies how many sequence values should be stored in memory for faster access.

Unlike the previous examples, to enter a new record into the Persons table, you need

to use the nextval function. This function is used to retrieve the next value from the

sequence object that we created.

INSERT INTO Persons (Personid,FirstName,LastName)

VALUES (seq_person.nextval,'Lars','Monsen');

Here, we can see that the Personid column is selected to be assigned the next number

from the sequence object that we created called “seq_person”.

SQL Dates

One of the most challenging parts when working with dates is to ensure that the format

of the date you are trying to enter is the same with the format of the date column in the

database.

It is important to note that data that contains only date portions will work as expected in

queries. However, if there is a time portion, things get a bit more complicated.

Date Data types found in MySQL:

• DATE - format YYYY-MM-DD

292 | Page

• DATETIME - format: YYYY-MM-DD HH:MI:SS

• TIMESTAMP - format: YYYY-MM-DD HH:MI:SS

• YEAR - format YYYY or YY

Data types found in SQL Server:

• DATE - format YYYY-MM-DD

• DATETIME - format: YYYY-MM-DD HH:MI:SS

• SMALLDATETIME - format: YYYY-MM-DD HH:MI:SS

• TIMESTAMP - format: a unique number

Keep in mind that the data types are chosen when you are creating a new table in your

database.

Table 55 - Orders table in Dates Example (Source: https://www.w3schools.com/sql/sql_dates.asp)

We will use the Orders table in our example to select the records with an OrderDate of

“2008-11-11”.

Example:

SELECT *

FROM Orders

WHERE OrderDate='2008-11-11';

The expected result will look something like this:

https://www.w3schools.com/sql/sql_dates.asp

293 | Page

Table 56 - Result of OrderDate query in Dates Example (Source: https://www.w3schools.com/sql/sql_dates.asp)

Note that two dates can be easily compared when there is no time stamp involved.

Suppose that you have the Orders table, but with a timestamp in the OrderDate column.

Table 57 - Orders table with timestamp in Dates Example (Source: https://www.w3schools.com/sql/sql_dates.asp)

Here, if you attempted to use the same query as we used above:

SELECT *

FROM Orders

WHERE OrderDate='2008-11-11';

You would get no result, because the query is not taking into account the time stamp. It

is recommended to not use time stamps unless you absolutely have to.

SQL Views

In SQL, a view is a virtual table of a result-set created from a specific query. A view is

useful when you want to view and present data through a combination of tables.

Syntax:

CREATE VIEW view_name AS

SELECT column1, column2, ...

https://www.w3schools.com/sql/sql_dates.asp
https://www.w3schools.com/sql/sql_dates.asp

294 | Page

FROM table_name

WHERE condition;

Note that a view always shows up-to-date data since the database recreates the virtual

table, every time users query it.

Example to query all customers from Brazil:

CREATE VIEW [Brazil Customers] AS

SELECT CustomerName, ContactName

FROM Customers

WHERE Country = 'Brazil';

To query the view:

SELECT * FROM [Brazil Customers];

Another example is to create a view that selects every product in the Products table with

a price that is higher than the average price:

CREATE VIEW [Products Above Average Price] AS

SELECT ProductName, Price

FROM Products

WHERE Price > (SELECT AVG(Price) FROM Products);

To query the view above, use the following statement:

SELECT * FROM [Products Above Average Price];

To update a view, use the CREATE OR REPLACE VIEW statement:

CREATE OR REPLACE VIEW view_name AS

SELECT column1, column2, ...

FROM table_name

WHERE condition;

295 | Page

The following example adds the “City” column to the Brazil Customer view that we

created earlier:

CREATE OR REPLACE VIEW [Brazil Customers] AS

SELECT CustomerName, ContactName, City

FROM Customers

WHERE Country = 'Brazil';

To delete a view, use the DROP VIEW statement:

DROP VIEW view_name;

For example, suppose we want to delete the “Brazil customers” view:

DROP VIEW [Brazil Customers];

SQL Data Types

Generally, each column in a table requires a name and a data type.

An SQL developer will need to decide the type of data that will be stored inside each

column when creating a table. The data type is used for SQL to understand the data

that will be contained in each column and also how it will interact with the data.

Please keep in mind that data types might have different names in different databases.

Always check the documentation even if the name is the same because other details

might be different like the size.

Data types in MySQL (Version 8.0)

MySQL has three main data types: string, numeric, and date/time.

296 | Page

String Data Types

Table 58 – String Data types (MySQL) (Source: https://www.w3schools.com/sql/sql_datatypes.asp)

https://www.w3schools.com/sql/sql_datatypes.asp

297 | Page

Numeric Data Types

Table 59 – Numeric Data types (MySQL) (Source: https://www.w3schools.com/sql/sql_datatypes.asp)

Date/Time Data Types

Table 60 – Date/Time Data types (MySQL) (Source: https://www.w3schools.com/sql/sql_datatypes.asp)

https://www.w3schools.com/sql/sql_datatypes.asp
https://www.w3schools.com/sql/sql_datatypes.asp

298 | Page

Data Types in SQL Server

String Data Types

Table 61 – String Data types (SQL Server) (Source: https://www.w3schools.com/sql/sql_datatypes.asp)

Numeric Data Types

Table 62 – Numeric Data types (SQL Server) (Source: https://www.w3schools.com/sql/sql_datatypes.asp)

https://www.w3schools.com/sql/sql_datatypes.asp
https://www.w3schools.com/sql/sql_datatypes.asp

299 | Page

Date/Time Data Types

Table 63 – Date/Time Data types (SQL Server) (Source: https://www.w3schools.com/sql/sql_datatypes.asp)

Other Data Types

Table 64 – Other Data types (SQL Server) (Source: https://www.w3schools.com/sql/sql_datatypes.asp)

Data Types in MS Access

Table 65 – Data types in Access (Source: https://www.w3schools.com/sql/sql_datatypes.asp)

https://www.w3schools.com/sql/sql_datatypes.asp
https://www.w3schools.com/sql/sql_datatypes.asp
https://www.w3schools.com/sql/sql_datatypes.asp

300 | Page

4.3. SQL References

SQL Keywords

Keyword Description

ADD Adds a column in an existing table

ADD CONSTRAINT Adds a constraint after a table is already created

ALL Returns true if all of the subquery values meet the condition

ALTER Adds, deletes, or modifies columns in a table, or changes

the data type of a column in a table

ALTER COLUMN Changes the data type of a column in a table

ALTER TABLE Adds, deletes, or modifies columns in a table

AND Only includes rows where both conditions is true

ANY Returns true if any of the subquery values meet the condition

https://www.w3schools.com/sql/sql_ref_add.asp
https://www.w3schools.com/sql/sql_ref_add_constraint.asp
https://www.w3schools.com/sql/sql_ref_all.asp
https://www.w3schools.com/sql/sql_ref_alter.asp
https://www.w3schools.com/sql/sql_ref_alter_column.asp
https://www.w3schools.com/sql/sql_ref_alter_table.asp
https://www.w3schools.com/sql/sql_ref_and.asp
https://www.w3schools.com/sql/sql_ref_any.asp

301 | Page

AS Renames a column or table with an alias

ASC Sorts the result set in ascending order

BACKUP DATABASE Creates a backup of an existing database

BETWEEN Selects values within a given range

CASE Creates different outputs based on conditions

CHECK A constraint that limits the value that can be placed in a

column

COLUMN Changes the data type of a column or deletes a column in a

table

CONSTRAINT Adds or deletes a constraint

CREATE Creates a database, index, view, table, or procedure

CREATE DATABASE Creates a new SQL database

CREATE INDEX Creates an index on a table (allows duplicate values)

https://www.w3schools.com/sql/sql_ref_as.asp
https://www.w3schools.com/sql/sql_ref_asc.asp
https://www.w3schools.com/sql/sql_ref_backup_database.asp
https://www.w3schools.com/sql/sql_ref_between.asp
https://www.w3schools.com/sql/sql_ref_case.asp
https://www.w3schools.com/sql/sql_ref_check.asp
https://www.w3schools.com/sql/sql_ref_column.asp
https://www.w3schools.com/sql/sql_ref_constraint.asp
https://www.w3schools.com/sql/sql_ref_create.asp
https://www.w3schools.com/sql/sql_ref_create_database.asp
https://www.w3schools.com/sql/sql_ref_create_index.asp

302 | Page

CREATE OR

REPLACE VIEW

Updates a view

CREATE TABLE Creates a new table in the database

CREATE

PROCEDURE

Creates a stored procedure

CREATE UNIQUE

INDEX

Creates a unique index on a table (no duplicate values)

CREATE VIEW Creates a view based on the result set of a SELECT

statement

DATABASE Creates or deletes an SQL database

DEFAULT A constraint that provides a default value for a column

DELETE Deletes rows from a table

DESC Sorts the result set in descending order

DISTINCT Selects only distinct (different) values

https://www.w3schools.com/sql/sql_ref_create_or_replace_view.asp
https://www.w3schools.com/sql/sql_ref_create_or_replace_view.asp
https://www.w3schools.com/sql/sql_ref_create_table.asp
https://www.w3schools.com/sql/sql_ref_create_procedure.asp
https://www.w3schools.com/sql/sql_ref_create_procedure.asp
https://www.w3schools.com/sql/sql_ref_create_unique_index.asp
https://www.w3schools.com/sql/sql_ref_create_unique_index.asp
https://www.w3schools.com/sql/sql_ref_create_view.asp
https://www.w3schools.com/sql/sql_ref_database.asp
https://www.w3schools.com/sql/sql_ref_default.asp
https://www.w3schools.com/sql/sql_ref_delete.asp
https://www.w3schools.com/sql/sql_ref_desc.asp
https://www.w3schools.com/sql/sql_ref_distinct.asp

303 | Page

DROP Deletes a column, constraint, database, index, table, or view

DROP COLUMN Deletes a column in a table

DROP CONSTRAINT Deletes a UNIQUE, PRIMARY KEY, FOREIGN KEY, or

CHECK constraint

DROP DATABASE Deletes an existing SQL database

DROP DEFAULT Deletes a DEFAULT constraint

DROP INDEX Deletes an index in a table

DROP TABLE Deletes an existing table in the database

DROP VIEW Deletes a view

EXEC Executes a stored procedure

EXISTS Tests for the existence of any record in a subquery

FOREIGN KEY A constraint that is a key used to link two tables together

FROM Specifies which table to select or delete data from

https://www.w3schools.com/sql/sql_ref_drop.asp
https://www.w3schools.com/sql/sql_ref_drop_column.asp
https://www.w3schools.com/sql/sql_ref_drop_constraint.asp
https://www.w3schools.com/sql/sql_ref_drop_database.asp
https://www.w3schools.com/sql/sql_ref_drop_default.asp
https://www.w3schools.com/sql/sql_ref_drop_index.asp
https://www.w3schools.com/sql/sql_ref_drop_table.asp
https://www.w3schools.com/sql/sql_ref_drop_view.asp
https://www.w3schools.com/sql/sql_ref_exec.asp
https://www.w3schools.com/sql/sql_ref_exists.asp
https://www.w3schools.com/sql/sql_ref_foreign_key.asp
https://www.w3schools.com/sql/sql_ref_from.asp

304 | Page

FULL OUTER JOIN Returns all rows when there is a match in either left table or

right table

GROUP BY Groups the result set (used with aggregate functions:

COUNT, MAX, MIN, SUM, AVG)

HAVING Used instead of WHERE with aggregate functions

IN Allows you to specify multiple values in a WHERE clause

INDEX Creates or deletes an index in a table

INNER JOIN Returns rows that have matching values in both tables

INSERT INTO Inserts new rows in a table

INSERT INTO

SELECT

Copies data from one table into another table

IS NULL Tests for empty values

IS NOT NULL Tests for non-empty values

JOIN Joins tables

https://www.w3schools.com/sql/sql_ref_full_outer_join.asp
https://www.w3schools.com/sql/sql_ref_group_by.asp
https://www.w3schools.com/sql/sql_ref_having.asp
https://www.w3schools.com/sql/sql_ref_in.asp
https://www.w3schools.com/sql/sql_ref_index.asp
https://www.w3schools.com/sql/sql_ref_inner_join.asp
https://www.w3schools.com/sql/sql_ref_insert_into.asp
https://www.w3schools.com/sql/sql_ref_insert_into_select.asp
https://www.w3schools.com/sql/sql_ref_insert_into_select.asp
https://www.w3schools.com/sql/sql_ref_is_null.asp
https://www.w3schools.com/sql/sql_ref_is_not_null.asp
https://www.w3schools.com/sql/sql_ref_join.asp

305 | Page

LEFT JOIN Returns all rows from the left table, and the matching rows

from the right table

LIKE Searches for a specified pattern in a column

LIMIT Specifies the number of records to return in the result set

NOT Only includes rows where a condition is not true

NOT NULL A constraint that enforces a column to not accept NULL

values

OR Includes rows where either condition is true

ORDER BY Sorts the result set in ascending or descending order

OUTER JOIN Returns all rows when there is a match in either left table or

right table

PRIMARY KEY A constraint that uniquely identifies each record in a

database table

PROCEDURE A stored procedure

https://www.w3schools.com/sql/sql_ref_left_join.asp
https://www.w3schools.com/sql/sql_ref_like.asp
https://www.w3schools.com/sql/sql_ref_limit.asp
https://www.w3schools.com/sql/sql_ref_not.asp
https://www.w3schools.com/sql/sql_ref_not_null.asp
https://www.w3schools.com/sql/sql_ref_or.asp
https://www.w3schools.com/sql/sql_ref_order_by.asp
https://www.w3schools.com/sql/sql_ref_outer_join.asp
https://www.w3schools.com/sql/sql_ref_primary_key.asp
https://www.w3schools.com/sql/sql_ref_procedure.asp

306 | Page

RIGHT JOIN Returns all rows from the right table, and the matching rows

from the left table

ROWNUM Specifies the number of records to return in the result set

SELECT Selects data from a database

SELECT DISTINCT Selects only distinct (different) values

SELECT INTO Copies data from one table into a new table

SELECT TOP Specifies the number of records to return in the result set

SET Specifies which columns and values that should be updated

in a table

TABLE Creates a table, or adds, deletes, or modifies columns in a

table, or deletes a table or data inside a table

TOP Specifies the number of records to return in the result set

TRUNCATE TABLE Deletes the data inside a table, but not the table itself

https://www.w3schools.com/sql/sql_ref_right_join.asp
https://www.w3schools.com/sql/sql_ref_rownum.asp
https://www.w3schools.com/sql/sql_ref_select.asp
https://www.w3schools.com/sql/sql_ref_select_distinct.asp
https://www.w3schools.com/sql/sql_ref_select_into.asp
https://www.w3schools.com/sql/sql_ref_select_top.asp
https://www.w3schools.com/sql/sql_ref_set.asp
https://www.w3schools.com/sql/sql_ref_table.asp
https://www.w3schools.com/sql/sql_ref_top.asp
https://www.w3schools.com/sql/sql_ref_truncate_table.asp

307 | Page

UNION Combines the result set of two or more SELECT statements

(only distinct values)

UNION ALL Combines the result set of two or more SELECT statements

(allows duplicate values)

UNIQUE A constraint that ensures that all values in a column are

unique

UPDATE Updates existing rows in a table

VALUES Specifies the values of an INSERT INTO statement

VIEW Creates, updates, or deletes a view

Table 66 – SQL Keywords and Descriptions (Source: https://www.w3schools.com/sql/sql_ref_keywords.asp)

MySQL Functions

For more details and a comprehensive list on specific functions used in MySQL, learners

can refer to this link.

SQL Server Functions

For more details and a comprehensive list on specific functions used in SQL Server,

learners can refer to this link.

https://www.w3schools.com/sql/sql_ref_union.asp
https://www.w3schools.com/sql/sql_ref_union_all.asp
https://www.w3schools.com/sql/sql_ref_unique.asp
https://www.w3schools.com/sql/sql_ref_update.asp
https://www.w3schools.com/sql/sql_ref_values.asp
https://www.w3schools.com/sql/sql_ref_view.asp
https://www.w3schools.com/sql/sql_ref_keywords.asp
https://www.w3schools.com/sql/sql_ref_mysql.asp
https://www.w3schools.com/sql/sql_ref_sqlserver.asp

308 | Page

MS Access Functions

For more details and a comprehensive list on specific functions used in SQL Server,

learners can refer to this link.

SQL Quick Ref

For a comprehensive list of SQL statements and their corresponding syntax, learners

can refer to this link.

https://www.w3schools.com/sql/sql_ref_msaccess.asp
https://www.w3schools.com/sql/sql_quickref.asp

309 | Page

4.4. SQL Examples

SQL Examples

There is comprehensive list of examples in the W3Schools website that learners can

use to self-study and practice their SQL skills further.

SQL Quiz

For learners that want to assess their knowledge and skills on SQL, please refer to one

of the following websites:

• W3Schools

• Tutorialspoint

https://www.w3schools.com/sql/sql_examples.asp
https://www.w3schools.com/sql/sql_quiz.asp
https://www.tutorialspoint.com/sql/sql_online_quiz.htm

310 | Page

5. JavaScript

311 | Page

Topic Information

Topic:

5. JavaScript

Prerequisites:

To learn JavaScript, learners must know the basics of HTML and CSS. For a working

knowledge of JavaScript and most web-based projects, this knowledge will be sufficient.

For more advanced projects and skills, it is recommended to know basic OOP concepts

and an OOP based programming language (like Java).

Workload:

15 hours.

Description:

JavaScript is a programming language that allows the developer to perform changes on

the content of a web page in a dynamic way. JavaScript is among the most powerful

and flexible programming languages of the web.

This JavaScript topic covers all the fundamental programming concepts, including data

types, operators, creating and using variables, generating outputs, structuring the code

to make decisions in programs or to loop over the same block of code multiple times,

creating and manipulating strings and arrays, defining and calling functions, etc.

Once learners are comfortable with the basics, they will move on to next level that

explains the idea of objects, the Document Object Model (DOM) and Browser Object

Model (BOM), as well as how to make use of the native JavaScript objects like Date,

Math, etc., and perform type conversions.

312 | Page

Moreover, some advanced concepts like event listeners, event propagation, borrowing

methods from other objects, hoisting behavior of JavaScript, encoding and decoding

JSON data, as well as detailed overview of new features introduced in ECMAScript 6

(or ES6) will be explored.

Learning outcomes:

Learners will understand how JavaScript allows the developer to change content

dynamically and modify the HTML or CSS information on the client side, when the

webpage is being shown to the user. Therefore, learners will study the structures of

JavaScript code; will get to know how to change HTML/CSS code on the loading of the

page and also will learn how to create a function and attach it to an event.

Material required:

• Computer or laptop

• Internet connection

• Text editor (online or offline): Sublime Text/Brackets/W3Schools online editor

Lesson Scenario:

The total time for this topic is 15 hours, and it will be up to the trainer/coach to decide

how much time to dedicate to teaching each subtopic. In order to make the most of all

the time available, we propose the use of the training materials produced by the project

(PPT presentations), which were designed with an effective use of time in mind. These

presentations are composed of the following elements:

• Development of the subtopic and main ideas to retain;

• Proposed Activities/Exercises.

That said, if the trainer/coach follows the logical sequence of the PPTs, he/she will

certainly be able to complete the session within the stipulated time limit. These

presentations can also be made available to learners for individual study.

https://www.sublimetext.com/
https://brackets.io/
https://www.w3schools.com/tryit/default.asp

313 | Page

Subtopics:

• 5.1. JavaScript Basic

• 5.2. JavaScript & DOM

• 5.3. JavaScript & BOM

• 5.4. JavaScript Advanced

Additional resources:

• JavaScript tutorial: w3schools

• Online Course on JavaScript: CodeAcademy

https://www.w3schools.com/js/default.asp
https://www.codecademy.com/learn/introduction-to-javascript

314 | Page

5.1. JavaScript Basic

JavaScript (JS) is the most widespread client-side scripting language (client-side

scripting is associated to scripts running within a web browser). JS is intended to add

interactivity and dynamic effects to the web pages by manipulating the content returned

from a web server.

JavaScript was first developed as LiveScript by Netscape’s computer programmer

Brendan Eich in 1995. It was later renamed to JavaScript, and became an ECMA

(European Computer Manufacturers Association) standard in 1997. Nowadays,

JavaScript is the standard client-side scripting language for web-based applications,

and it is supported by nearly all web browsers available (Chrome, Firefox, Safari, etc.).

JavaScript is an object-oriented language, and it also has some similarities in syntax to

Java programming language, even though it is not related to Java at all.

JavaScript can be used for various purposes:

• Modify the content of a web page by adding or removing elements;

• Change the style and position of the elements on a web page;

• Monitor events like mouse click, hover, etc. and react to it;

• Make and control transitions and animations;

• Produce alert pop-ups to display info or warning messages to the user;

• Complete operations based on user inputs and display the results;

• Validate user inputs before submitting them to the server;

• And many other interesting purposes to be checked later.

315 | Page

Getting started with JavaScript

 From this point, learners will understand how simple it can be to add interactivity to a

web page by using JavaScript.

Characteristically, there are 3 ways of adding JS to a webpage:

a) Embedding the JavaScript code between a <script> and a </script> tag;

b) Creating an external JavaScript file with the .js extension and then load it within

the page through the src attribute of the <script> tag.

c) Placing the JavaScript code directly inside an HTML tag using the special tag

attributes such as onclick, onmouseover, onkeypress, onload, etc.

a) Embedding the JavaScript code between a <script> and a </script> tag;

The JavaScript code can be embedded directly within a web page by placing it between

the <script> and </script> tags. The <script> tag indicates the browser that the contained

statements are to be interpreted as executable script and not HTML, as checked in the

following example:

Figure 1 – Embedding JS code between a <script> and a </script> tag (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

b) Creating an external JavaScript file with the .js extension and then load it

within the page through the src attribute of the <script> tag.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

316 | Page

A JavaScript code can be placed as well into a separate file with a .js extension, being

then called in that file in the same document through the src attribute of the <script> tag,

as follows:

<script src="js/hello.js"></script>

This is especially valuable if the programmer wants the same scripts available to multiple

documents. Following this procedure, he/she will avoid repeating the same task over

and over again, and it makes his/her website much simpler to maintain.

Forward to the statement above, a JavaScript file named "hello.js" will be created and

the following code shall be inserted in it:

Figure 2 – Creating a file and calling a function on JS (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

At this point, the programmer may call the above JS file within a webpage by using the

<script> tag, as seen in the image below:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

317 | Page

Figure 3 – Creating a file and calling a function on JS (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

c) Placing the JavaScript code directly inside an HTML tag using the special

tag attributes such as onclick, onmouseover, onkeypress, onload, etc.

JavaScript code may be introduced inline by inserting it directly inside the HTML tag by

means of the special tag attributes such as onclick, onmouseover, onkeypress, onload,

etc.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

318 | Page

Nonetheless, it is not advisable to place large amount of JavaScript code inline as it

disorders up HTML with JavaScript and makes JS code hard to maintain. Figure 4

shows an example (in this case, an alert message is shown upon clicking on the button

element):

Figure 4 – Placing the JS code inline (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

The <script> element can be positioned in the <head> or <body> section of an HTML

document. However, scripts should be preferably positioned at the end of the body

section, before the closing </body> tag. This procedure will enable web pages to load

faster, since it avoids obstruction of initial page rendering. Each <script> tag blocks the

page rendering process until it has fully downloaded and executed the JavaScript code,

so placing them in the head section (i.e. <head> element) of the document without any

valid reason will significantly impact the performance of a website.

There are differences between Client-side and Server-side Scripting. Client-side

scripting languages (e.g., JavaScript or VBScript are understood and executed by the

web browser, in opposite of server-side scripting languages (e.g., PHP, ASP, Java,

Python, Ruby, etc.), which run on the web server and their output is sent back to the

web browser in HTML format.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

319 | Page

Client-side scripting has many advantages comparing to traditional server-side scripting.

For instance, JavaScript can be used to check if the user has entered invalid data in

form fields and show notifications for input errors consequently in real-time before

submitting the form to the web-server for final data validation and further processing in

order to avoid needless network bandwidth usages and the misuse of server system

resources.

Likewise, response from a server-side script is slower as compared to a client-side

script, as server-side scripts are processed on a remote computer (not on a local one).

JavaScript Syntax

It is time to learn how to write the JS code.

Firstly, it is important to understand the JavaScript Syntax.

The syntax of JS is the set of rules that comprise a well-structured JavaScript

programme. JS involves statements that are placed within the <script> </script> HTML

tags in a web page, or within the external JavaScript file having .js extension.

Figure 5 below presents an example of a JS statement:

Figure 5 – Example of a JavaScript statement (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

320 | Page

Learners should state that JavaScript is case-sensitive. So, variables, language

keywords, function names and other identifiers must be typed consistently in terms of

letters capitalisation. For instance, the variable myVar must be typed this way (not

“MYVAR”, “myvar”, etc.). This applies for all cases.

Commonly to the previous topics, JavaScript also provides the possibility of writing

comments throughout the coding lines. Comments are inserted mainly because they

provide extra information to the source code, but also because it can help programmers

on understanding their codes after some time, teamworking, etc.

It is possible to add both single-line as well as multi-line comments on JavaScript.

Single-line comments start with a double forward slash (//), followed by the comment

text:

Figure 6 – Single-line comment on JavaScript (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

For a multi-line comment, a slash and an asterisk (/*) are the starting point, ending with

an asterisk and a slash (*/):

Figure 7 – Multi-line comment on JavaScript (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

321 | Page

JavaScript Variables

For storing data in JavaScript, programmers create variables. They are key for all the

programming languages, and are used to store data, for instance by string of text,

numbers, or other element(s). Whenever the programmer needs, he/she can set, update

and retrieve data or value stored in the variables. Variables can be understood as

symbolic names for values.

A variable can be created by using the var keyword, in which the assignment operator

(“=”) is used to allocate value to a variable, as follows: var varName = value

Figure 8 – Creating a variable (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

In this example, three variables have been created:

Number 1 – string value

Number 2 – number

Number 3 – Boolean value

In JS, some variables are created with the purpose of holding values such as user

inputs. That being said, they can be declared without having any initial values

associated, as follows:

Figure 9 – Creating a variable without having any initial values assigned to them (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

322 | Page

Moreover, the programmer may also declare multiple variables and, in a single

statement, set their initial values. Each variable is detached by commas, as follows:

Figure 10 – Declaring multiple variables (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

The latest revision of JavaScript (ECMAScript 2015 or ES6) introduces two new

keywords for declaring variables: let and const.

The const keyword works the same way as let. However, variables declared using const

cannot be reassigned later in the code, as follows:

Figure 11 – Declaring multiple variables (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

In opposite to var keyword, which declare function-scoped variables, both let and const

keywords declare variables, scoped at block-level ({}). Block scoping means that a new

scope is created between a pair of curly brackets.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

323 | Page

JavaScript variables have specific rules for being named:

• A variable name must start with a letter, underscore (_), or dollar sign ($).

• A variable name cannot start with a number.

• A variable name can only comprise alpha-numeric characters (A-Z, 0-9)

and underscores.

• A variable name cannot comprehend spaces.

• A variable name cannot be a JavaScript keyword or a JavaScript reserved

word.

JavaScript Generating Output

There are certain situations in which programmers may need to create outputs from the

JS code, e.g., see the variable’s value, write a message to browser console, etc. In

JavaScript, there are some different ways of creating output including writing output to

the browser window or browser console, displaying output in dialog boxes, writing output

into an HTML element, etc.

It is not difficult to output a message or to write data to the browser’s console (it can be

accessed by clicking F12). For that purpose, the console.log() , a powerful yet simple

method, should be applied.

Figure 12 – Generating ouputs by using console.log (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

324 | Page

To write the content to the current document only while that document is being

deconstructed, the document.write() method can be used.

Figure 13 – Generating ouputs by using console.log (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

If the document.write() method is used after the page has been loaded, it will overwrite

all the existing content in that document, as follows in this link.

Alert dialog boxes can also be added to display the message or output data to the

user. To create an alert dialog, the alert() method is used, as follows:

Figure 14 – Generating alert dialog boxes (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

get-started.php)

Outputs can be inserted or written inside an HTML element using the innerHTML

property. Nonetheless, the programmer should select the element before writing the

output, using the getElementById() method.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=problem-with-document-write-method
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

325 | Page

Figure 15 – Using the getElementByld () method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

JavaScript Data Types

Data types essentially stipulate what kind of data can be stored and manipulated within

a program. There are six basic data types in JS, which can be divided into three main

categories:

• Primitive (or primary) – String, Number, and Boolean are examples of primitive

data types, which can hold only one value at a time;

• Composite (or reference) – Object, Array, and Function (which are all types of

objects) are composite data types. These can hold collections of values and more

complex entities; and

• Special data types – Undefined and Null are special data types.

The String data type

It is used to embody textual data (for instance, sequences of characters). Strings are

created using single or double quotes surrounding one or more characters:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

326 | Page

Figure 16 – The String data type (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

It should be noted that quotes can be included inside the string, but they should not

match the enclosing quotes, as follows on this example.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=include-quotes-inside-the-string

327 | Page

The Number Data Type

The number data type is useful for exhibiting positive or negative numbers with or

without decimal place, or numbers written using exponential notation, for instance: 1.5e-

4 (equivalent to 1.5x10-4).

Figure 17 – The String data type (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

The Number Data Type also comprises some special values which are: Infinity, -Infinity

and NaN. Infinity represents the mathematical infinity (∞), which is greater than any

number. Infinity is the result of dividing a nonzero number by 0, as could be checked on

Figure 18:

Figure 18 – The Number Data Type (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

328 | Page

However, NaN represents a special Not-a-Number value. It is a result of an invalid or an

undefined mathematical operation, for example, taking the square root of -1 or dividing

0 by 0, etc.

The Boolean Data Type

Two values can be hold in this data type: true or false. It is classically used to stock

values like yes (true) or no (false), on (true) or off (false), etc. as follows:

Figure 19 – The Boolean Data Type (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

Boolean values likewise come as an outcome of comparisons in a program. This

example relates two variables and displays the result in an alert dialog box.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=not-a-number
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=comparisons

329 | Page

The Undefined Data Type

The undefined data type can only take one value – the special value undefined. If a

variable has been declared, but has not been assigned a value, the value shall be

declared undefined.

Figure 20 – The Undefined Data Type (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

The Null Data Type

This is one more special data type that can have only one value – the null value. A null

value means that simply there is no value. It is not equivalent to an empty string ("") or

zero, it is purely nothing.

A variable can be clearly emptied of its current contents by assigning it the null value.

Figure 21 – The Null Data Type (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

330 | Page

The Object Data Type

The object is a multifaceted data type that permits to store data collections.

An object contains properties, defined as a key-value pair. A property key (name) is

always a string, but the value can be any data type (strings, numbers, booleans, or

complex data types like arrays, function and other objects). The simplest way to create

an object in JavaScript is shown below:

Figure 22 – The simplest way for creating an object in JS (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

The quotes around property name may be omitted if the name is a valid JS name. This

means quotes are required around "first-name" but are non-compulsory around

firstname. Thus, the car object in Figure 22 can also be written as follows:

Figure 23 – Rewriting the car object from Fig. 22 (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

331 | Page

The Array Data Type

An array is a type of object used for packing multiple values in single variable. Each

value (also known as ‘element’) in an array has a numeric position, known as its index,

and it may comprise data of any data type-numbers, strings, booleans, functions,

objects, and even other arrays. The array index starts from 0 (zero), so that the first

array element is arr[0] not arr[1].

The simplest way to make an array is by stipulating the array elements as a comma-

separated list enclosed by square brackets, as follows:

Figure 24 – Rewriting the car object from Fig. 22 (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

332 | Page

The Function Data Type

The function is a callable object that makes a block of code. Functions are objects, thus

it is possible to assign them to variables, as follows:

Figure 25 – The Function Data Type (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

Actually, functions can be used anywhere, and other values can be used. They can be

stored in variables, objects, and arrays. Functions can be approved as arguments to

other functions, and they can be returned from functions.

The typeof Operator

The typeof operator can be used to realize what type of data a variable covers. It can

be used with or without parentheses (typeof(x) or typeof x).

The typeof operator is mostly beneficial to process the values of different types in a

different way. However, the programmer should be cautious, as it may produce

unforeseen results in some cases:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

333 | Page

Figure 26 – The typeof Operator (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

As it is quite noticeable in the example from Figure 26, when the null value is tested

using the typeof operator (line 22), "object" is returned instead of "null".

This is an enduring bug in JavaScript, but since lots of codes on the web are written

around this behaviour, and since fixing it would generate many more problems, this

issue was excluded by the committee that design and maintains JavaScript.

JavaScript Operators

Operators are symbols or keywords that inform the JavaScript engine to make a given

action. For instance, the addition (+) symbol is an operator that tells JavaScript engine

to add two variables or values, whereas the equal-to (==), greater-than (>) or less-than

(<) symbols are the operators that tells JavaScript engine to compare two variables or

values, etc.

Among the different operators used in JavaScript, the first ones to be described are the

JavaScript Arithmetic Operators. These are put in action in order to perform common

arithmetical operations (additions, subtraction, multiplication, and so on). The complete

list follows below:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

334 | Page

Operator Description Example Result

+ Addition x + y Sum of x and y

- Subtraction x - y Difference of x and y.

* Multiplication x * y Product of x and y.

/ Division x / y Quotient of x and y

% Modulus x % y Remainder of x divided by y

Table 1 – Arithmetic Operators (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

Here is a practical example on how the aforementioned operators can be used:

Figure 27 – The JS Arithmetic Operators (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

get-started.php)

Then, there are as well JS String Operators (two of them):

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

335 | Page

Operator Description Example Result

+ Concatenation str1 + str2 Concatenation of str1 and str2

+= Concatenation assignment str1 += str2 Appends the str2 to the str1

Table 2 – String Operators (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

A practical example:

Figure 28 – The JS Arithmetic Operators (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

get-started.php)

Concerning the JS Incrementing and Decrementing Operators, they are used to

increment/decrement a variable’s value.

Operator Name Effect

++x Pre-increment Increments x by one, then returns x

x++ Post-increment Returns x, then increments x by one

--x Pre-decrement Decrements x by one, then returns x

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

336 | Page

x-- Post-decrement Returns x, then decrements x by one

Table 3 – Incrementing and Decrementing Operators (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

A real-world example:

Figure 29 – JS Incrementing and Decrementing Operators (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

To combine conditional statements, JS Logical Operators are used.

Operator Name Example Result

&& And x && y True if both x and y are true

|| Or x || y True if either x or y is true

! Not !x True if x is not true

Table 4 – Logical Operators (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

337 | Page

Here is a practical example:

Figure 30 – JS Incrementing and Decrementing Operators (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

Regarding JS Comparison Operators, programmers use them to compare two values

in a Boolean Fashion.

Operator Name Example Result

== Equal x == y True if x is equal to y

=== Identical x === y True if x is equal to y, and they are of the same type

!= Not equal x != y True if x is not equal to y

!== Not identical x !== y True if x is not equal to y, or they are not of the same

type

< Less than x < y True if x is less than y

> Greater than x > y True if x is greater than y

>= Greater than or equal to x >= y True if x is greater than or equal to y

<= Less than or equal to x <= y True if x is less than or equal to y

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-data-types.php

338 | Page

Table 5 – Comparison Operators (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

How they work:

Figure 31 – JS Incrementing and Decrementing Operators (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

339 | Page

JavaScript Events

Before going into deep on this section, it is important to acknowledge what an event is

in this context. An event is something that occurs each time users interact with the web

page, such as when a link or a button is clicked, text is entered into an input box or

textarea, a selection is made in a select box, key is pressed on the keyboard, the mouse

pointer is moved, a form is submitted, and so on. Every so often, the browser is able to

trigger the events itself, for example when loading a page.

When an event happens, programmers can use a JavaScript event handler (or listener)

to spot them and do specific task/s. By convention, the names for event handlers always

start with the word "on", so an event handler for the click event is named onclick, likewise

an event handler for the load event is named onload, event handler for the blur event is

named onblur, etc.

There are many ways of assigning an event handler. The simplest way is to add them

directly to the start tag of the HTML elements, by means of the special event-handler

attributes. E.g., to assign a click handler for a button element, the onclick attribute may

be used, as follows:

Figure 32 – JS Incrementing and Decrementing Operators (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

340 | Page

Nonetheless, to keep the JavaScript detached from HTML, programmers can set up the

event handler in an external JavaScript file or within the <script> and </script> tags, as

follows:

Figure 33 – Assigning an event handler (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

Generally, events can be categorised into four main groups — mouse events,

keyboard events, form events and document/window events. There are many other

events, which will be exploited more furtherly. The most useful events will be overviewed

below:

• Mouse Events

A mouse event is activated when the user clicks some element, moves the mouse

pointer over an element, and so on. Some important mouse events and their event

handlers are as follows:

o The Click Event (onclick): The click event happens when a user clicks

on an element on a web page. Habitually, these are form elements and

links. A click event can be handled with an onclick event handler.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

341 | Page

The following example presents the case of an alert message popping up

when the user clicks on the elements.

o The Contextmenu Event (oncontextmenu): it occurs when users click

the mouse’s right button on an element, opening a context menu.

Oncontextmenu event handler handles a contextmenu event. This

example pops an alert message when users right-click the elements.

o The Mouseover Event (onmouseover): it happens when users move

the mouse pointer over an element. It can be handled with the

onmouseover event handler. The following example shows an alert

message when the mouse is placed over the elements.

o The Mouseout Event (onmouseout): it takes place when users move

the mouse pointer outside of an element. It can be handled by using the

onmouseout event handler. The following example will show you an alert

message when the mouseout event occurs.

• Keyboard Events

A keyboard event takes place when the user presses or releases a key on the keyboard.

Some of the most important keyboard events and their event handlers are as follows:

o The Keydown Event (onkeydown): it happens when users press down

a key on the keyboard. It can be handled by using the onkeydown event

handler. This example shows an alert message each time a keydown

event occurs.

o The Keyup Event (onkeyup): it occurs when users release a key on the

keyboard. Handled with onkeyup event handler. This example shows an

alert message when it occurs.

o The Keypress Event (onkeypress): it happens when a user presses

down a key on the keyboard that has a character value linked to it. E.g.,

Ctrl, Shift, Alt, Esc, Arrow keys, etc. will not generate a keypress event,

but will generate a keydown and keyup event. The onkeypress event

handler handles the keypress event. It can be checked here through an

alert message.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-click-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-contextmenu-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-contextmenu-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-mouseover-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-mouseout-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-keydown-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-keyup-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-keypress-event

342 | Page

• Form Events

A form event is triggered as soon as a form control receives or loses focus or when

the user modifies a form control value (e.g., by typing text in a text input), select an

option in a select box, etc.

o The Focus Event (onfocus): it happens when users give focus to an

element on a webpage. It can be handled with onfocus event handler. This

example will highlight the background of text input in yellow colour when

it obtains the focus.

o The Blur Event (onblur): it happens when the user takes the focus away

from a window or form element. It can be handled with the onblur event

handler. The following example will exhibit an alert message as soon as

the text input element misses focus.

o The Change Event (onchange): it occurs as soon as a user modificates

the value of a form element. Event handler: onchange. This example

shows an alert message when the option in the select box is changed.

o The Submit Event (onsubmit): it only happens when the user submits a

form on a webpage. Event handler: onsubmit. This example shows an

alert message while submitting the form.

• Document/Window Events

Situations in which the page has loaded or resized the browser window can as well

trigger events.

o The Load Event (onload): it happens when a webpage fully loads in a

web browser. Event handler: onload. The following example will emit an

alert message as soon as page loads.

o The Unload Event (onunload): when the user leaves the present

webpage, this event takes place. Event handler: onunload. This example

shows an alert pop-up when the user tries to leave the page.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-focus-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-focus-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-blur-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-change-event
https://www.tutorialrepublic.com/javascript-tutorial/javascript-events.php
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-load-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-unload-event

343 | Page

o The Resize Event (onresize): it happens when the Internet user resizes,

minimises or maximises the browser window. Event handler: onresize.

This example shows an alert message right after the user resizes the

browser’s window.

JavaScript Strings

In JavaScript, strings play a key role on the overall structure of a webpage, since they

are a sequence of letters, numbers, special characters and arithmetic values or even a

combination of all. They can be created by enfolding the string literal (i.e. string

characters) either within single quotes (') or double quotes ("), as follows:

Figure 34 – JavaScript strings example (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

Quotes can be used inside a string, but they should not match the quotes surrounding

the string:

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-resize-event
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

344 | Page

Figure 35 – JavaScript strings example II (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

get-started.php)

Nonetheless, single quotes can still be put inside a single quoted strings or double

quotes inside double quoted strings, by separating the quotes with a backslash

character (\), as Figure 36 shows. The backslash is termed an escape character, and

the sequences \’ and \” are escape sequences.

Figure 36 – The backslash (\) escape character (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

Escape sequences are likewise valuable for adding characters that cannot be inserted

by means of a keyboard. Some other most frequently used escape sequences are:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

345 | Page

• \n is replaced by the newline character

• \t is replaced by the tab character

• \r is replaced by the carriage-return character

• \b is replaced by the backspace character

• \\ is replaced by a single backslash (\)

Figure 37 elucidates how escape sequences work:

Figure 37 – How escape sequences work (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

get-started.php)

Performing Operations on Strings

JavaScript makes available several properties and methods to make operations on

string values. Precisely, only objects can have properties and methods. However, in

JavaScript, primitive data types can perform like objects when the programmer refers to

them with the property access notation. JavaScript offers this possibility through the

creation of a provisional wrapper object for primitive data types. This procedure is done

automatically by the JS interpreter in the background.

Getting the Length of a String

The length property returns the length of the string, which is the number of characters

delimited in the string, including the number of special characters as well, such as \t or

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

346 | Page

\n. Programmers should be careful on using parentheses after length (e.g. str.length()),

as the correct way is str.length (or else, it will generate an error).

Figure 38 – How to get the length of a string (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

get-started.php)

Finding a String Inside Another String

indexOf() method can be used to find a substring or string within another string. This

technique returns the index or position of the first incidence of a specified string within

a string.

Figure 39 – Finding a string inside another string (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

Likewise, the lastIndexOf() technique can be used to get the index or position of the last

occurrence of the specified string within a string, as follows:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

347 | Page

Figure 40 – Finding a string inside another string using the lastIndexOf() method (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

Both the indexOf(), and the lastIndexOf() approaches return -1 if the substring is not

found. Both methods as well accept an optional integer parameter which stipulates the

position within the string at which to start the search.

Searching for a Pattern Inside a String

The search() method can be used to search a particular piece of text or pattern inside a

string. As the indexOf() approach, search() also returns the index of the first match, and

returns -1 if no matches were found, but unlike indexOf(), search () can as well take a

regular expression as its argument to deliver advanced search aptitudes. It should be

stated that the search() approach does not support global searches, as it disregards the

g flag or modifier of its regular expression argument.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

348 | Page

Figure 41 – Searching for a pattern inside a string (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

Extracting a Substring from a String

For take out a part or substring from a string, the slice() method can be used. This takes

two parameters: start index (index where extraction begins), and an optional end index

(index before which to end extraction), like str.slice(startIndex, endIndex).

The example below slices out a portion of a string from position 4 to position 15:

Figure 42 – Extracting a Substring from a String using the slice() method (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

349 | Page

Negative values can be specified as well. These values are treated as strLength +

startIndex, where strLength is the length of the string (for instance, str.length), for

example, if startIndex is -5 it is treated as strLength - 5. If startIndex is greater than or

equal to the length of the string, slice() method returns an empty string. Correspondingly,

if optional endIndex is not specified or omitted, the slice() method extracts to the end of

the string.

Figure 43 – Specifying negative values (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

The substring() method to extract a section of the given string based on start and end

indexes, as str.substring(startIndex, endIndex). The substring() method is very

comparable to the slice(), except some differences:

• If either argument is less than 0 or is NaN, it is treated as 0.

• If either argument is greater than str.length, it is treated as if it were str.length.

• If startIndex is greater than endIndex, then substring() will switch those two

arguments; i.e., str.substring(5, 0) == str.substring(0, 5).

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

350 | Page

Figure 44 – The substring() method to extract a section of the given string based on start and end indexes

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

Extracting a Fixed Number of Characters from a String

JavaScript also delivers the substr() technique, which is similar to slice() with a minor

difference: the second parameter stipulates the number of characters to extract instead

of ending index, as str.substr(startIndex, length). If length is 0 or a negative number, an

empty string is returned.

Figure 45 – Extracting a Fixed Number of Characters from a String (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

351 | Page

Replacing the Contents of a String

The replace() technique is used to replace part of a string with another string. This

approach takes a regular expression to match or substring with two parameters and a

replacement string, i.e. str.replace(regexp|substr, newSubstr). This replace() method

returns a new string, it does not distress the original string, which will remain unaffected.

.

Figure 46 – Replacing the Contents of a String using the replace() technique (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

By default, the replace() technique substitutes only the first match, and it is case-

sensitive. To replace the substring within a string in a case-insensitive way, a regular

expression (regexp) with an i modifier can be used, as follows:

Figure 47 – Replacing the Contents of a String using the replace() technique (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

Also, to replace all the incidences of a substring within a string in a case-insensitive

manner, the g modifier along with the i modifier can be used, as follows below:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

352 | Page

Figure 48 – Replacing all the incidences of a substring within a string in a case-insensitive manner (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

Converting a String to Uppercase or Lowercase

The toUpperCase() method is used to convert a string to uppercase, as follows:

Figure 49 – Converting a String to Uppercase using toUpperCase() method (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

Likewise, the toLowerCase() method is used to convert a string to lowercase:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

353 | Page

Figure 50 – Converting a String to Lowercase using toLowerCase() method (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

Concatenating Two or More Strings

Two or more strings can be concatenated or combined by using the + and +=

assignment operators.

Figure 51 – Concatenating Two or More Strings (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

354 | Page

Accessing Individual Characters from a String

The charAt() method can be used to access individual character from a string, as

str.charAt(index). The index specified should be a number between 0 and str.length - 1.

If no index is given, the first character in the string is returned, since the default is 0.

Figure 52 – Accessing Individual Characters from a String (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

However, there is a good alternative to this procedure. Since ECMAScript 5, strings can

be treated like read-only arrays, and individual characters can be seen from a string

using square brackets ([]) instead of the charAt() approach, as follows below:

Figure 53 – Accessing Individual Characters from a String using square brackets ([]) instead of the charAt()

approach (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

355 | Page

Splitting a String into an Array

The split() method can be used to fragment a string into an array of strings, using the

syntax str.split(separator, limit). The separator argument stipulates the string at which

each split should happen, while the limit arguments specifies the maximum length of the

array. If separator argument is omitted or not found in the specified string, the entire

string is allocated to the first element of the array.

Figure 54 – Splitting a String into an Array (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

get-started.php)

To split a string into an array of characters, an empty string ("") should be stipulated as

a separator, as this example shows.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=split-a-string-into-an-array-of-characters

356 | Page

JavaScript Numbers

There are two types of numbers in JavaScript:

• Regular numbers in JavaScript are stored in 64-bit format IEEE-754, otherwise

known as “double precision floating point numbers”. These are the most

commonly used type of numbers.

• BigInt numbers, to represent integers of random length. They are sometimes

needed, because a regular number cannot securely exceed 253 or be less than

-253.

There are more ways to write a number. For instance, the obvious way to write 1 billion

would be ‘1000000000’ or ‘1_000_000_000’, using the underscore as a separator. In

this case, the underscore is the “syntactic sugar”, meaning that it makes the number

clearer to read. The JS engine ignores underscores between digits, so it is the exact

same one billion from the first case.

However, in the real world, everyone most certainly will try to avoid writing long

sequences of zeros. Something like “1bn” for a billion or “2.5 bn” for 2 billion 500 million

seems more reasonable. The same principle applies for most large numbers. That being

said, it is possible to shorten a number in JS, by adding the letter “e” to it and specifying

the quantity of zeroes:

Figure 55 – Specifying the quantity of zeroes (Source: https://javascript.info/number)

So, e multiplies the number by 1 with the given zeroes count.

1e3 === 1 * 1000; // e3 means *1000

1.23e6 === 1.23 * 1000000; // e6 means *1000000

The same principle aplies for small numbers. For instance, what should be written for 1

microsecond (one millionth of a second)?

https://javascript.info/number

357 | Page

let mсs = 0.000001;

Just like the aforementioned case with the big numbers, using "e" can be helpful. To

avoid writing the zeroes explicitly, the following can be written:

let mcs = 1e-6; // six zeroes to the left from 1

There are 6 zeroes in 0.000001. Then, it is not hard to conclude 1e-6.

Therefore, a negative number after "e" implies a division by 1 with the given number of

zeroes, as follows:

Figure 56 – The division of 1 by the given number of zeroes (Source: https://javascript.info/number)

Hex, binary, and octal numbers

Hexadecimal numbers are commonly utilized in JavaScript to embody colours, encode

characters, and for many other purposes. So obviously, there is a quicker way to write

them: 0x and then the number, as follows:

Figure 57 – The 0x way to speed up JS processes (Source: https://javascript.info/number)

Binary and octal numeral systems are not often utilized, but as well supported using the

0b and 0o (zero, o) prefixes:

https://javascript.info/number
https://javascript.info/number

358 | Page

Figure 58 – The 0b and 0o prefixes for binary and octal numeral systems (Source: https://javascript.info/number)

There are merely 3 numeral systems with this support. For further numeral systems, the

function parseInt should be used.

toString(base) method

The num.toString(base) method returns a string representation of num in the numeral

system with the provided base, as follows:

Figure 59 – The num.toString(base) method (Source: https://javascript.info/number)

The base can vary from 2 to 36. By default, it’s 10.

There are general use cases for this:

• base=16 is applied for hex colours, character encodings etc, digits can

be 0..9 or A..F.

• base=2 is mainly for correcting bitwise operations, digits can be 0 or 1.

• base=36 is the maximum, digits can be 0..9 or A..Z. The entire Latin alphabet is

used to represent a number. A curious, but useful case for 36 is when it is needed

to turn a long numeric identifier into something shorter, for example to make a

short url.

https://javascript.info/number
https://javascript.info/number

359 | Page

There is a specific case to be noted. When two dots are spotted in 123456..toString(36),

this is not a typo. When the programmer wants to call a method directly on a number, it

is needed to place two dots (‘..’) after it.

If a single dot is placed as follows (‘123456.toString(36)’), it would be an error, as

JavaScript syntax entails the decimal part after the first dot. And if the programmer

places one more dot, then JavaScript knows that the decimal part is empty and now

goes the method.

Rounding

One of the most applied operations when operating with numbers is rounding.

There are some built-in functions for rounding:

• Math.floor

Rounds down: 3.1 turn into 3, and -1.1 converts -2.

• Math.ceil

Rounds up: 3.1 becomes 4, and -1.1 converts -1.

• Math.round

Rounds to the nearest integer: 3.1 becomes 3, 3.6 becomes 4, the middle case: 3.5

rounds up to 4 too.

• Math.trunc (not supported by Internet Explorer)

Eliminates anything after the decimal point without rounding: 3.1 turn out to be 3, -1.1

becomes -1.

These functions cover all the potential ways to cope with the decimal part of a number.

But what about rounding the number to n-th digit after the decimal?

For example, to round 1.2345 to two digits (1.23).

There are two ways to do so:

1. Multiply-and-divide.

E.g., to round the number to the 2nd digit after the decimal, one can multiply the number

by 100 (or a bigger power of 10), call up the rounding function and then divide it back.

360 | Page

2. The toFixed(n) method rounds the number to n digits after the point and returns

a string representation of the result.

Figure 60 – The toFixed(n) method (Source: https://javascript.info/number)

This rounds up or down to the nearest value, like Math.round:

Figure 61 – The toFixed(n) method – continuation (Source: https://javascript.info/number)

It should be stated that result of toFixed is a string. If the decimal part is shorter than

required, zeroes are attached to the end:

Figure 62 – The toFixed(n) method – final exposition (Source: https://javascript.info/number)

Imprecise calculations

On the inside, a number is represented in 64-bit format IEEE-754, so there are precisely

64 bits to store a number: 52 to store the digits; 11 to store the position of the decimal

point (zero for integer numbers), and 1 bit is for the sign.

If a number is too big, it would pour out the 64-bit storage, possibly giving an infinity.

Something that ends to happen quite often is the loss of precision.

Considering the following test:

Figure 63 – First test for imprecise calculations (Source: https://javascript.info/number)

https://javascript.info/number
https://javascript.info/number
https://javascript.info/number
https://javascript.info/number

361 | Page

As it looks, strangely the result from the 0.1+0.2 sum is a false 0.3. What could it be,

then?

Figure 64 – Second test for imprecise calculations (Source: https://javascript.info/number)

As it could be imagined, there are more consequences than an incorrect comparison in

this case. Pretending that a purchase is being made on an online shop and the visitor

puts $0.10 and $0.20 goods into his/her cart… the total amount of the order would be

$0.30000000000000004. That would be quite surprising.

Why does a situation like this happen?

A number is stored in memory in its binary form, a sequence of bits – ones and zeroes.

However, fractions like 0.1, 0.2 that seem simple in the decimal numeric system are in

fact unending fractions in their binary form.

That is to say, what is 0.1? It is one divided by ten 1/10, one-tenth. In decimal numeral

system such numbers are easily representable. Comparing it to one-third: 1/3. It

becomes an endless fraction 0.33333(3).

So, division by powers 10 is guaranteed to work well in the decimal system, but division

by 3 is not. For the same reason, in the binary numeral system, the division by powers

of 2 is guaranteed to work, but 1/10 becomes an endless binary fraction.

There is just no way to store exactly 0.1 or exactly 0.2 using the binary system, just like

there is no way to store one-third as a decimal fraction.

The numeric format IEEE-754 resolves this by rounding to the closest possible number.

These rounding rules normally do not allow one to sees that “tiny precision loss”, but it

exists.

https://javascript.info/number

362 | Page

Figure 65 – Final test for imprecise calculations (Source: https://javascript.info/number)

When two numbers are summed, their ‘’precision losses’’ come together. Therefore 0.1

+ 0.2 is not 0.3 precisely.

The most reliable method to cope with this situation is toFixed(n):

Figure 66 – The toFixed(in) method (Source: https://javascript.info/number)

It should be stated that toFixed(n) returns a string every time. It ensures that it has 2

digits after the decimal point. That is quite useful if there is need to show $0.30 for e-

shopping purposes.

Tests: isFinite and isNaN

Previously, those two special numeric values have been described. Infinity (and -

Infinity) is a special numeric value that is greater (less) than anything. NaN represents

an error. Both belong to the type number, but are not “normal” numbers, so there are

special functions to check for them:

• isNaN(value) converts its argument to a number and then tests it for being NaN:

Figure 67 – The isNaN(value) method (Source: https://javascript.info/number)

https://javascript.info/number
https://javascript.info/number
https://javascript.info/number

363 | Page

• isFinite(value) converts its argument to a number and returns true if it’s a regular

number, not NaN/Infinity/-Infinity;

•

Figure 68 – The isFinite(value) method (Source: https://javascript.info/number)

parseInt and parseFloat

Numeric conversion using a plus + or Number() is rigorous. If a value is not exactly a

number, it fails. The only exception is spaces at the beginning or at the end of the string,

as they are ignored.

However, in real life there are often values in units, as "100px" or "12pt" in CSS.

Likewise, in many countries the currency symbol goes after the amount, so having the

example of “19€", the programmer would like to extract a numeric value out of that.

That’s what parseInt and parseFloat are for.

They “read” a number from a string until they cannot. In case of an error, the collected

number is returned. The function parseInt returns an integer, whereas parseFloat will

return a floating-point number:

Figure 69 – parseInt and parseFloat (Source: https://javascript.info/number)

https://javascript.info/number
https://javascript.info/number

364 | Page

Other math functions

JavaScript owns a built-in Math object which includes a small library of mathematical

functions and constants:

• Math.random()

Returns a random number from 0 to 1 (not including 1).

• Math.max(a, b, c...) / Math.min(a, b, c...)

Returns the greatest/smallest from the arbitrary number of arguments.

• Math.pow(n, power)

Returns n raised to the given power.

JavaScript If…Else Statements

As many other programming languages, JavaScript also allows to write code that

execute different actions based on the results of a logical or comparative test conditions

at run time. Thus, test conditions can be created as expressions that evaluates to either

true or false and, based on these results, certain actions can be performed.

There are several conditional statements in JavaScript that can be used to make

decisions:

• The if statement;

• The if...else statement;

• The if...else if....else statement;

• The switch...case statement.

The if statement

The if statement is used to execute a block of code only if the specified condition is

evaluated as being true. This is the simplest JS’s conditional statements and can be

written as:

365 | Page

Figure 70 – Code to create an if condition (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-

else-statements.php)

A practical example can be quite demonstrative of this feature’s usefulness. If the

current day is Friday, the coding shown on Figure 68 will display a message saying

“Have a nice weekend”:

Figure 71 – If...statement created to display a “Have a nice weekend” message in case is Friday (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php)

The if…else statement

The decision-making process of JS can be enhanced by providing an alternative choice

through adding an else statement to the if statement. The if…else statement allows to

execute one block of code if the specified condition evaluates as true and another block

of code if it evaluates as false.

Figure 72 – Code to create an if…else condition (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-if-else-statements.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php

366 | Page

The example from Figure 68 will be applied to test the if…else statement. This time, the

“Have a nice weekend!” message will be displayed in case the current day is Friday (as

the previous case), however, it will emit the “Have a nice day” message if it is not Friday.

Figure 73 – Code to create an if…else condition, displaying a “Have a nice day” or “Have a nice weekend”

message depending on the case (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-

statements.php)

The Ternary Operator

The ternary operator gives a shorthand way of writing the if...else statements. It is

characterized by the question mark (‘?’) symbol and it takes three operands: a condition

to check, a result for true, and a result for false. Its basic syntax is as follows:

var result = (condition) ? value1 : value2

If the condition is evaluated as true, the value1 will be returned, if not value2 will be

returned.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php

367 | Page

Figure 74 – How to apply the ternary operator (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-if-else-statements.php)

JavaScript Switch…Case Statements

The switch..case statement is an alternate scenario to the if...else if...else statement,

which does nearly the same thing. The switch...case statement analyses a variable or

expression against a series of values until it finds a match, and then executes the block

of code corresponding to that match. Its syntax is as follows:

Figure 75 – Syntax for switch…case statements (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-if-else-statements.php)

This example displays the name of the day of the week the reader is in.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=switch-case-statement

368 | Page

The switch...case statement diverges from the if...else statement in one crucial way.

The switch statement executes line by line and when JavaScript finds a case clause that

evaluates to true, it does not only performs the code corresponding to that case clause,

but also executes all the successive case clauses till the end of the switch block

automatically.

To prevent this, a break statement must be included after each case (as can be checked

on Figure 73). The break statement informs the JS interpreter to break out of the

switch...case statement block once it executes the code linked to the first true case.

The break statement is yet not required for the case or default clause when it appears

at last in a switch statement. However, it is a good programming practice to dismiss the

last case, or default clause in a switch statement with a break. It prevents a possible

programming error later on if another case statement is included in the switch statement.

The default clause is voluntary, which stipulates the actions to be made if no case

matches the switch expression. The default clause does not have to be the last clause

to be found in a switch statement.

Each case value must be exclusive within a switch statement. Still, different cases do

not need to have a unique action. Several cases can share the same action.

JavaScript Arrays

Arrays are complex variables that allow to store more than one value or a group of

values under a single variable name. JavaScript arrays can store any valid value,

including strings, numbers, objects, functions, and at the same time other arrays,

therefore enabling to create more complex data structures such as an array of objects

or an array of arrays.

In the following example, the name of colours will be stored in a JavaScript code:

369 | Page

Figure 76 – Storing the name of colours in a JS code (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-arrays.php)

However, it may be quite difficult and tiring to store multiple elements in variables,

opposite to only three in the case above. Additionally, using so many variables at the

same time and keeping track of them all will be a very tricky task. And here array comes

into play. Arrays solve this problem by providing an ordered structure for storing multiple

values or a group of values.

Creating an Array

The easiest way to create an array in JavaScript is enclosing a comma-separated list of

values in square brackets ([]), as shown in the following syntax:

var myArray = [element0, element1, ..., elementN];

370 | Page

Figure 77 – Creating an Array (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php)

Acessing the elements of an Array

Array elements can be accessed by their index utilizing the square bracket notation. An

index is a number that represents an element's position in an array.

Array indexes are zero-based. This means that the first item of an array is stored at

index 0, not 1, the second item is stored at index 1, and so on. Array indexes start at 0

and go up to the number of elements minus 1. So, array of five elements would have

indexes from 0 to 4.

Figure 78 – How to get individual array element by their index (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-arrays.php)

371 | Page

Getting the Length of an Array

The length property returns the length of an array, which is the total number of elements

included in the array. Array length is always greater than the index of any of its element.

Figure 79 – Getting the Length of an Array (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

arrays.php)

Looping Through Array Elements

for loop can be used to gain access to each element of an array in sequential order, as

follows:

Figure 80 – Looping through array elements (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

arrays.php)

ECMAScript 6 has introduced a simpler way to iterate over array element, which is for-

of loop. In this loop there is no need to initialise and keep track of the loop counter

variable (i).

372 | Page

Adding New Elements to an Array

To add a new element at the end of an array, simply use the push() method, as follows:

Figure 81 – Adding New Elements to an Array (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-arrays.php)

Likewise, to add a new element at the beginning of an array the unshift() method should

be used, as follows:

Figure 82 – Add a new element at the beginning of an array using the unshift() method (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php)

Removing Elements from an Array

To eliminate the last element from an array you can use the pop() method. This method

returns the value that was popped out.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php

373 | Page

Figure 83 – Removing Elements from an Array (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-arrays.php)

Adding or Removing Elements at any Position

The splice() method is a very flexible array method that allows to add or remove

elements from any index, using the syntax arr.splice(startIndex, deleteCount,

elem1, ..., elemN)

This method takes three parameters: the first is the index at which to start splicing the

array, it is required; the second is the number of elements to remove (0 should be used

in case the programmer does not want to remove any elements), it is optional; and the

third parameter is a set of replacement elements, it is also optional.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php

374 | Page

Figure 84 – Adding or Removing Elements at any Position (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-arrays.php)

The splice() method returns an array of the deleted elements, or an empty array if no

elements were deleted, as it can be seen in Figure 81. If the second argument is absent,

all elements from the start to the end of the array are removed.

Unlike slice() and concat() methods, the splice() method modifies the array on which it

is called on.

Creating a String from an Array

There may be situations in which a programmer simply intends to create a string by

joining the elements of an array. To do so, he/she can use the join() method. This

method takes an optional parameter which is a separator string that is added in between

each element. If you omit the separator, then JavaScript will use comma (,) by default.

Figure 85 – Creating a String from an Array (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

arrays.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php#slice
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php#concat
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php

375 | Page

An array can also be converted to a comma-separated string using the toString(). This

method does not allow the separator parameter as join().

Merging Two or More Arrays

The concat() method can be used to combine two or more arrays. This method does not

change the prevailing arrays, instead it returns a new array.

Figure 86 – Merging Two or More Arrays (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

arrays.php)

The concat() method can take any number of array arguments, so an array can be

created from any number of other arrays, as shown in the following example:

Figure 87 – The concat() method (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

arrays.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php

376 | Page

Searching Through an Array

The indexOf() and lastIndexOf() methods can be used for searching an array for a

specific value. If the value is found, both methods return an index representing the array

element. If the value is not found, -1 is returned. The indexOf() method returns the first

one found, although the lastIndexOf() returns the last one found. Both methods also

recognise an optional integer parameter from index which specifies the index within the

array at which to start the search.

Figure 88 – Searching through an array (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

arrays.php)

includes() method can also be used to find out whether an array involves a certain

element or not. This method takes the same parameters as indexOf() and lastIndexOf()

methods, but it returns true or false instead of index number.

Figure 89 – Searching through an array using the includes () method (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php

377 | Page

To search an array based on certain condition the JavaScript find() method can be used,

which has been recently introduced in ES6. This method returns the value of the first

element in the array that fulfils the provided testing function. If not, it returns undefined.

The find() method simply searches the first element that meets the provided testing

function. Still, if the programmer intends to find out all the matched elements, the filter()

method can be used. It creates a new array with all the elements that successfully

passes the given test, as can be checked in this example.

JavaScript Sorting Arrays

Sorting is a popular task when working with arrays. It can be used, for example, to

display the city or country names in alphabetical order. The JavaScript Array object has

a built-in method sort() for sorting array elements in alphabetical order.

Figure 90 – The built-in method sort() for sorting array elements in alphabetical order (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php)

To reverse the order of the elements of an array, the reverse () method can be used.

It reverses an array in such a way that the first array element becomes the last, and

vice-versa. The sort() and reverse() method changes the initial array and return a

reference to the same array, as it can be checked here.

For sorting numeric arrays, it is not advisable to use the sort () method, as it can

produce unexpected results. For this purpose, programmers should pass a compare

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=filter-an-array
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=reverse-the-order-of-an-array

378 | Page

function, as when a compare function is specified, array elements are sorted according

to the return value of the compare function.

For example, when comparing a and b:

• If the compare function returns a value less than 0, then a comes first.

• If the compare function returns a value greater than 0, then b comes first.

• If the compare function returns 0, a and b remain unchanged regarding each

other, but grouped with respect to all other elements.

Therefore, since 5 - 20 = -15 which is less than 0, therefore 5 comes first, likewise 20 -

10 = 10 which is greater than 0, therefore 10 comes before 20, likewise 20 - 75 = -55

which is less than 0, so 20 comes before 75, similarly 50 comes before 75, and so on.

This can be checked in this example.

To find the maximum and minimum value in an Array, the apply() method in

combination with the Math.max() and Math.min() can be used, as follows in this

example. The apply() method offers an accessible way to pass array values as

arguments to a function that accepts multiple arguments in an array-like manner, but

not an array. Then, the resulting statement Math.max.apply(null, numbers) in the

example above is equivalent to the Math.max (3, -7, 10, 8, 15, 2).

Finally, to sort an array of objects the sort() method can be used. In this example, it is

shown how to sort an array of objects by property values.

JavaScript Loops

Loops are applied to perform the same block of code many times if a certain condition

is encountered. The key idea behind a loop is to mechanize the repetitive tasks within a

program to save the time and effort. JavaScript now supports five different types of

loops:

• while — loops through a block of code if the condition specified evaluates to true.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=sort-a-numeric-array-correctly-using-compare-function
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=find-the-maximum-and-minimum-value-in-an-array
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=find-the-maximum-and-minimum-value-in-an-array
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=sort-an-array-of-objects

379 | Page

• do…while — loops through a block of code one time; then the condition is

evaluated. If the condition is true, the statement is repeated if the specified

condition is true.

• for — loops through a block of code until the counter reaches a specified number.

• for…in — loops through the properties of an object.

• for…of — loops over iterable objects such as arrays, strings, etc.

The while loop

This is the easiest looping statement provided by JS. It loops through a block of code if

the specified condition evaluates to true. Once the condition fails, the loop is stopped.

The generic syntax of the while loop is:

while(condition) {

 // Code to be executed

}

In this example, a loop that keeps on running as long as the variable i ≤ 5. As it can be

checked, i will increase by 1 each time the loop runs. Programmers must ensure that

the condition specified in the loop can eventually go false. If not, the loop will never stop

iterating (infinite loop).

The do…while loop

The do-while loop is a variant of the while loop, which assesses the condition at the end

of each loop iteration. With a do…while loop, the block of code is executed once, and

then the condition is evaluated, if the condition is true, the statement is repeated if the

specified condition evaluated to is true. Its common syntax is:

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=while-loop

380 | Page

do {

 // Code to be executed

}

while(condition);

The JavaScript code in this example defines a loop that starts with i=1. It will then

produce the output and increase the value of variable i by 1. After that the condition is

evaluated, and the loop will continue to run if i ≤ 5.

The for loop

It repeats a block of code if a certain condition is met. It is normally used to implement

a block of code for certain number of times. Its syntax is:

for(initialization; condition; increment) {

 // Code to be executed

}

The parameters of the for loop statement have the following implications:

• initialisation — it is used to set the counter variables and evaluated once entirely

before the first execution of the body of the loop.

• condition — it is evaluated at the beginning of each iteration. If it evaluates to

true, the loop statements achieve. If it evaluates to false, the execution of the

loop ends.

• increment — it updates the loop counter with a new value each time the loop

runs.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=do-while-loop

381 | Page

This example defines a loop that begins with i=1. The loop will go on until the value of i

≤ 5. The variable i will increase by 1 each time the loop runs.

The for...in Loop

It is a special type of a loop that repeats over the properties of an object, or the elements

of an array. Its syntax is:

for(variable in object) {

 // Code to be executed

}

The loop counter i.e., variable in the for-in loop is a string, not a number. It comprises

the name of present property or the index of the current array element.

This example demonstrates how to loop through all properties of a JS object.

The for...of Loop

ES6 presents a new for-of loop which allows to iterate over arrays or other iterable

objects (e.g., strings) very simply. Additionally, the code inside the loop is executed for

each element of the iterable object. This example shows how to loop trough arrays and

strings using this loop.

JavaScript Functions

A function is a set of statements that accomplish specific tasks and can be kept and

maintained independently. Functions give a way to create reusable code packages

which are more manageable and easier to debug. Some advantages of using functions

are as follows:

• Functions decreases the repetition of code within a program — Function

allows to extract frequently used block of code into a single component. This way

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=for-loop
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=for-in-loop
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=es6-for-of-loop

382 | Page

it is possible to perform the same task by calling this function wherever needed

within a script without having to copy and paste the same block of code over and

over.

• Functions makes the code much easier to maintain — Since a function

created once can be applied many times, any changes made inside a function

are automatically implemented at all the places without affecting the respective

files.

• Functions makes it easier to get rid of the errors — When the program is split

into functions, if any error arise, the programmer knows precisely what function

is causing the error and where to spot it. Consequently, fixing errors becomes

much simpler.

Defining and Calling a Function

The declaration of a function starts with the function keyword, followed by the name of

the function to be created, then followed by parentheses, and lastly by the function's

code between curly brackets {}. To declare a function, the following syntax applies:

function functionName() {

 // Code to be executed

}

This simple example displays a “Hello” message.

Once a function is defined, it can be called from anywhere in the document, by typing

its name followed by a set of parentheses, like sayHello() in the aforementioned

example.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=define-and-call-a-function

383 | Page

Adding Parameters to Functions

Parameters can be specified when defining a function to accept input values at run time.

The parameters act like placeholder variables within a function; they are replaced at run

time by the values (known as argument) offered to the function at the time of request.

Parameters are set on the first line of the function inside the set of parentheses, as

follows:

function functionName(parameter1, parameter2, parameter3) {

 // Code to be executed

}

The displaySum() function in this example gets two numbers as arguments, simply add

them as one and then display the result in the browser. There is no limit for defining

parameters. Nevertheless, for each parameter specified, a corresponding argument

requires to be passed to the function when it is called, if not its value becomes undefined.

Default Values for Function Parameters

With ES6, it is possible to specify default values to the function parameters. This implies

that if no arguments are provided to function when it is called, these default parameters

values will be used. This example is quite explanative regarding how valuable this

feature is, since to achieve the same result, the prior procedure was this one.

Returning Values from a Function

A function can return a value back to the script that called the function as a result, by

utilizing the return statement. The value may be of any type (i.e., arrays and objects).

The return statement typically placed as the last line of the function before the closing

curly bracket and ends it with a semicolon, as displayed here.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=add-parameters-to-a-function
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=pass-arguments-to-a-function
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=es6-function-with-default-parameter-values
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=setting-default-values-for-function-parameters-in-older-versions
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=return-a-value-from-a-function

384 | Page

A function can does not return multiple values. Still, similar results can be obtained by

returning an array of values, as exhibited here.

Working with Function Expressions

The syntax used before to create functions is called function declaration. There is

another syntax for building a function – function expression. Once stored in a variable,

the variable can be utilized as a function. The syntax of the function declaration and

function expression seems very similar, but they vary in the way they are evaluated. As

observed in the previous example, the function expression gave an exception when it

was invoked before it is defined, but the function declaration executed effectively. JS

analyses declaration function before the program executes. Hence, it does not make a

difference if the program invokes the function before it is defined, as JavaScript has

elevated the function to the top of the current scope in the background. The function

expression is not assessed until it is assigned to a variable; consequently, it is still

undefined when invoked.

Understanding the Variable Scope

Variables can be declared anywhere in JS. However, the location of the declaration will

establish the extent of a variable's availability within the JavaScript program – this

process is also called variable scope. By default, variables declared within a function

have local scope, which means they cannot be viewed or controlled from outside of that

function, as shown here. Though, any variables declared in a program outside of a

function has global scope, wherever that script is located concerning the function, as it

can be checked here.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=return-multiple-values-from-a-function
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=function-expression
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=assign-a-function-to-a-variable
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=function-declaration-vs-function-expression
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=global-variable
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=global-variable

385 | Page

JavaScript Objects

JavaScript is an object-based language and there nearly everything is an object or acts

like one. Thus, to work with JS successfully and efficiently, programmers need to

understand how objects work, as well as how to create objects and use them.

A JavaScript object is simply a collection of named values. They are typically referred

to as properties of the object. Being an array a collection of values, in which each value

has an index (a numeric key) starting from zero and incrementing by one for each value.

An object is like an array, but the difference is that the programmer defines the keys,

(name, age, gender, etc.).

Creating an object

Programmers can create objects with curly brackets, including a voluntary list of

properties as well. A property can be “key:value” pair, in which the key (or property

name) is always a string, and value (or property value) can be any data type (strings,

numbers, Booleans, arrays, functions, etc.). Moreover, properties with functions as their

values are frequently called methods to distinguish them from other features. A JS object

may be as this. This example creates an object called person, which has 3 properties

(name, age and gender) and one method displayName(). This method shows the value

of this.name, which agrees to person.name. This is the easiest and ideal way to create

a new object in JF, which is known as object literals syntax. The property names

generally do not need to be quoted except if they are reserved words, or if they contain

spaces or special characters (anything other than letters, numbers, and the _ and $

characters), or if they start with a number, as shown here.

Accessing Object’s Properties

In order to access or get the value of a property, the dot (.) can be applied, as well as

the square bracket ([]) notation, as this example shows. The dot notation is simpler to

read and write, but it cannot always be used. If the name of the property is not valid (for

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=creating-objects
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=quoting-property-names-of-an-object
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=get-properties-values-of-an-object

386 | Page

example, if it contains special characters or spaces), the dot notation cannot be used,

but the bracket notation instead. It presents much more flexibility than dot notation and

additionally allows to identify property names as variables as a replacement for string

literals.

Looping Through Object’s Properties

Programmers can iterate through the key-value pairs of an object using the for...in loop.

It is specifically enhanced for iterating over object's properties, as seen here.

Setting Object's Properties

Likewise, new properties can be set, or the existing one can be updated by using the

dot (.) or bracket ([]) notation, as demonstrated here.

Deleting Object's Properties

The delete operator can be applied to entirely delete properties from an object.

Removing is the only way to really get rid of a property. Adjusting the property to

undefined or null simply changes the value of the property, it does not remove property

from the object. So, it has no effect on variables or declared functions. Nevertheless,

programmers should avoid delete operator for the purpose of deleting an array element,

as it does not modify the array's length, it just drops a hole in the array.

Calling Object's Methods

An object's method can be accessed the same way as one would access properties—

using the dot notation or applying the square bracket notation, as can be checked here.

Manipulating by Value vs. Reference

JS objects are reference types, which means that when the programmer makes copies

of them, they are simply copying the references to that object, while primitive values like

strings and numbers are assigned or copied as a whole value. This example is quite

demonstrative of this idea. As it could be observed, a copy of a variable message has

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=access-properties-of-an-object-using-bracket-notation
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=loop-through-an-object
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=set-the-properties-of-an-object
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=call-the-methods-of-an-object
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=copy-by-value

387 | Page

been done and it changed the value of that same copy. Both variables remain distinct

and separate. However, if the same principle is applied to an object, a different result

will be gathered. So, any changes done to the variable user also interfere with the

person variable, as both variables refer to the same object. Therefore, merely copying

the object does not really clone it but copies the reference to that object.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=copy-by-reference
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=copy-by-reference

388 | Page

5.2. JavaScript & DOM

What is the Document Object Model (DOM)?
DOM is created by the browser when a web page is loaded in HTML or XML documents.

It is used to define the logical structure of these documents and to access and alter their

elements.

The HTML DOM refers to the Document Object Model of the HTML documents, whereas

the XML DOM refers to the Document Object Model of the XML documents. In this

subchapter, we will focus on the HTML DOM which can be used to access and

manipulate HTML documents via JavaScript.

The DOM is constructed as a hierarchical tree of objects that include all parts of an

HTML document such as elements, attributes, text, etc. These individual objects of the

tree are also known as nodes, and they are comprised of parent and child nodes. In

graphical form, it will look something like the diagram provided below.

Figure 91 – HTML DOM Tree of Objects (Source: https://www.w3schools.com/js/js_htmldom.asp)

Within the HTML DOM, JavaScript can do the following:

• change all the HTML elements in the page

https://www.w3schools.com/js/js_htmldom.asp

389 | Page

• change all the HTML attributes in the page

• change all the CSS styles in the page

• remove existing HTML elements and attributes

• add new HTML elements and attributes

• react to all existing HTML events in the page

• create new HTML events in the page

JavaScript DOM Selectors

Selecting DOM Elements in JavaScript

JavaScript is used to get or modify the content or value of the HTML elements of the

web page and apply some special effects such as animations or hide. To be able to

perform any action, you need to find or select the target HTML element.

We will go through some of the most common ways of selecting elements on a page

and manipulating them with JavaScript.

Selecting the Topmost Elements

The topmost elements can be accessed directly as document properties.

For instance, to access the <html> element, use the document.documentElement

property. For the <head> element, you can use the document.head property and for the

<body> element, the document.body property.

Let’s see an example to understand all of this a bit better.

390 | Page

Figure 92 - Topmost Elements Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-selectors.php)

* It is important to note that the document.body should not be used before the <body>

element since it will return null. The program needs to go through the <body> element

first to access the document.body property.

Let’s look at this example to understand why the <body> will be null:

 Figure 93 - Topmost Elements Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-selectors.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php

391 | Page

This example demonstrates what we saw in the beginning about the hierarchical

relationships that exist between nodes. You need to be mindful that in order to access

the document.body property, you will have to start from the <body> element to avoid

null values.

Selecting Elements by ID

If you want to find or select an HTML element, the easiest way is to select it is based on

its unique ID. You can do this with the getElementById() method.

In the following example, the element that has an ID attribute id="mark" is selected and

highlighted:

Figure 94 - Selecting Elements by ID Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-selectors.php)

The getElementById() method is used to return the element as an object if a matching

element is found. Otherwise, it will return null.

* Keep in mind that any HTML element can have an id attribute, which must be a unique

value within a page. This essentially means that no two elements can have the same

id.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php

392 | Page

Selecting Elements by Class Name

If you want to select all the elements with specific class names, use the

getElementsByClassName() method. It will return an array-like object of all child elements which

have all the given class names.

Let’s look at an example:

Figure 95 – Selecting Elements by Class Name Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-selectors.php)

Selecting Elements by Tag Name

If you want to select elements by their tag name, use the getElementsByTagName()

method. This method will also return an array-like object of all child elements which have

the given tag name.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php

393 | Page

Let’s look at an example to understand this a bit better:

Figure 96 - Selecting Elements by Tag Name Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-selectors.php)

Selecting Elements with CSS Selectors

CSS Selectors offer a very powerful and efficient way to select HTML elements in a

document. To select elements that match the specified CSS Selector, you can use the

querySelectorAll() method.

This method will return a list of all the elements that match the specified selectors.

Follow the example below to see how you can examine this list like an array:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php

394 | Page

Figure 97 - Selecting Elements with CSS Selectors Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-selectors.php)

* Please note that the querySelectorAll() method supports CSS pseudo-classes such as

:first-child, :last-child, :hover, etc. However, this method will always return an empty list

for CSS pseudo-elements like ::before, ::after, ::first-line, etc.

JavaScript DOM Styling

Styling DOM Elements in JavaScript

You can also change the visual presentation of HTML documents in a dynamic way by

using JavaScript to apply different styles to HTML elements. Almost all element styles

can be set such as fonts, colours, margins, borders, background images, text alignment,

width and height, position, and so on.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php

395 | Page

Here, we will go through various methods that can be used to set styles in JavaScript.

Setting Inline Styles on Elements

The style attribute is used to apply inline styles directly to the specific HTML element.

The style property is used in JavaScript to get or set the inline style of an element.

In the following example, colour and font properties will be set for an element with

id="intro":

Figure 98 - Inline Styles on Elements Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-styling.php)

Naming Conventions of CSS Properties in JavaScript

It is important to mention that many of CSS properties contain hyphens (-) in their names

such as font-size, background-image, text-decoration, etc. However, in JavaScript, the

hyphen is a reserved operator that signifies a minus sign. Therefore, it is not possible to

write an expression in this way: elem.style.font-size.

To overcome this issue, CSS property names in JavaScript that contain one or more

hyphens are converted to intercapatisalised style words. This essentially means that the

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php

396 | Page

hyphens are removed and the first letter after the hyphen is capitalised. For instance,

the CSS property font-size become fontSize in DOM property.

Getting Style Information from Elements

The style property is also used to get the styles applied to HTML elements.

The example below will get style information from the element with id="intro":

Figure 99 - Style property – Example (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-

styling.php)

The style property isn’t the most useful when it comes to getting style information from

the elements since it only returns the style rules that are set in the element’s style

attribute and not those that come from elsewhere such as style rules in the embedded

style sheets, or external style sheets.

If you want to get the values of all CSS properties that are used to render an element

you can use the window.getComputedStyle() method, as shown in the following

example:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php

397 | Page

Figure 100 - window.getComputedStyle() – Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-styling.php)

* Keep in mind that the value 700 for the CSS property font-weight is the same as the

keyword bold. The colour keyword red is the same as rgb(255,0,0), which is the rgb

notation of a colour.

Adding CSS Classes to Elements

Another way to get or set CSS classes to HTML elements is by using the className

property. Class is a reserved word in JavaScript; thus, JavaScript uses the className

property to refer to the value of the HTML class attribute.

Let’s look at the following example to learn how to add a new class, or replace all existing

classes to a <div> element with id="info":

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php

398 | Page

Figure 101 - Adding Classes to Elements Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-styling.php)

An even better way to work with CSS classes is by using the classList property to get,

set or remove CSS classes easily from an element. This property is supported in all

major browsers except Internet Explorer before version 10.

Let’s see an example of this property:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php

399 | Page

Figure 102 - classList property - Adding Classes to Elements Example (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php)

JavaScript DOM Get Set Attributes

Working with Attributes

Attributes are special words used inside the start tag of an HTML element to control the

tag’s behaviour or provide more information about the tag.

In this section, we will go through several methods of adding, removing or changing an

HTML element’s attribute.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php

400 | Page

Getting Element's Attribute Value

To get the current value of an element’s attribute, you can use the getAttribute() method.

If that particular attribute is not found on the element, it will return null.

Let’s see the following example below:

Figure 103 - getAttribute() method – Getting Element’s Attribute Value Example (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php)

Setting Attributes on Elements

If you want to set an attribute on a specified element, you can use the setAttribute()

method. If the attribute already exists on the element, the value will be updated. If not,

a new attribute will be added with specified name and value.

In the following example, we will add a class and a disabled attribute to the <button>

element:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php

401 | Page

Figure 104 - setAttribute() method – Setting Attributes on Elements Example (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php)

If you want to update or change the value of an existing attribute on an element, you

can also use the setAttribute() method.

Let’s see an example that will update the value of the existing href attribute of an anchor

(<a>) element:

Figure 105 - setAttribute() method – Updating or Changing Attributes on Elements Example (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php)

Removing Attributes from Elements

To remove an attribute from a specific element, you can use the removeAttribute()

method.

Remember the href attribute that we changed from the anchor element; we are now

going to remove it in the following example:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php

402 | Page

Figure 106 - removeAttribute() method – Removing Attributes from Elements Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php)

JavaScript DOM Manipulation

Manipulating DOM Elements in JavaScript

So far, we have learnt how to select and style HTML DOM elements. Now, we will learn

how to add or remove DOM elements in a dynamic way, how to get their contents and

many more.

Adding New Elements to DOM

The document.createElement() method is used to create a new element in an HTML

document. It creates a new element; however, it does not add it to the DOM.

A separate step is needed to add it to the DOM, as shown in the example below:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php

403 | Page

Figure 107 - Adding New Elements Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-manipulation.php)

In the example we just saw, the appendChild() is used to add the new element at the

end of any other children under the specified parent node.

You also have the option to add the new element before any other children, as shown

in the example below:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php

404 | Page

Figure 108 - Adding New Elements Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-manipulation.php)

Getting or Setting HTML Contents to DOM

If you want to get or set the contents of HTML elements, you can use the innerHTML

property. This property is used to set or get the HTML markup inside the element, which

contains content between its opening and closing tags.

Let’s look at an example to get a better understanding of this:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php

405 | Page

Figure 109 - Getting or Setting HTML Contents to DOM Example (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php)

As you can from the example, new elements are inserted quite easily into the DOM with

the innerHTML property. But this property replaces all the existing content of an element.

Therefore, if you do not want to replace the existing contents of an element, you can

use the insertAdjacentHTML() method. This method takes two parameters: the HTML

to be inserted and its position. The position must be one of the following: "beforebegin",

"afterbegin", "beforeend", and "afterend". It is also significant to note that this method is

supported in all major browsers.

In the following example, you can see how the positioning works:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php

406 | Page

Figure 110 - insertAdjacentHTML() method - Getting or Setting HTML Contents to DOM Example (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php)

* Keep in mind that for the beforebegin and afterend positions to work the node has to

be in the DOM tree and have a parent element.

* Also, when inserting an HTML into a page, be careful not to use user input that hasn't

been escaped/sanitised, to prevent XSS attacks.

Removing Existing Elements from DOM

To remove a child node from the DOM, you can use the removeChild() method. This

method will also return the removed node.

Let’s see the example below:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php

407 | Page

Figure 111 - Removing Existing Elements from DOM Example (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php)

You can also remove the child element without knowing the parent element. You can

find the child element and use the parentNode property to find its parent. It will return

the parent of the given node in the DOM tree.

Figure 112 - Removing Existing Elements from DOM Example (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php

408 | Page

Replacing Existing Elements in DOM

You also have the option of replacing an element in HTML DOM with another by using

the replaceChild() method. This method takes on two parameters: the node to be

inserted and the node to be replaced. The syntax is used is as follows:

parentNode.replaceChild(newChild, oldChild);

Figure 113 - Replacing Existing Elements in DOM Example (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php)

JavaScript DOM Navigation

Navigating Between DOM Nodes

By now, you should have a better idea of how to select individual elements on a web

page. There are many occasions where you would need to access child, parent or

ancestor element. We have talked about nodes in the beginning of this subchapter and

now we will see how we can access the different types of nodes.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php

409 | Page

DOM nodes have several properties and methods that let you navigate or traverse

through the tree DOM structure and make necessary changes quite easily.

Accessing the Child Nodes

The firstChild and lastChild properties allow you to access the first and last direct child

node of a node respectively. If a node does not have any child element, it will return null.

Let’s check out the example below:

Figure 114 - Accessing Child Nodes Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-navigation.php)

* Please note that the nodeName is a read-only property, which returns the name of the

current node as a string. For example, it will return the tag name of an element node,

#text for text node, #comment for comment node, #document for document node, and

so on.

In the example that we just saw, the nodeName of the first child node of the main DIV

elements returned #text instead of H1. This happens because white space, i.e., spaces,

tabs, newlines, and so on, are considered valid characters and they become part of the

DOM tree in the form of #text nodes. Then, the <div> tag that contains a newline before

the <h1> will create #text node.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

410 | Page

In order to prevent this issue with the firstChild and lastChild returning #text or

#comment nodes, you can use the firstElementChild and lastElementChild properties

as an alternative. These properties will return only the first and last element of the node

respectively. However, this will not work in Internet Explores prior to Version 9.

The example below will give you a better understanding of this:

Figure 115 - Accessing Child Nodes Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-navigation.php)

To access all child nodes of a given element, you can also use the childNodes property.

Keep in mind that the first child node is assigned index 0.

See the example provided below:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

411 | Page

Figure 116 - Accessing Child Nodes Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-navigation.php)

Here, the childNodes returns all child nodes, including non-element nodes like text and

comment nodes.

If you want to get a collection of only elements, you should use the children property

instead.

Let’s look at an example to understand how to use this property:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

412 | Page

Figure 117 - Accessing Child Nodes Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-navigation.php)

Accessing the Parent Nodes

To access the parent node of a specific node in the DOM tree, you can use the

parentNode property.

* Note that the parentNode property will always return null values for document nodes

because they do not have parents.

In the following example, you can see how the parentNode property is used:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

413 | Page

Figure 118 - Accessing Parent Nodes Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-navigation.php)

It is good to know that the topmost DOM tree nodes can be accessed directly as

document properties. We saw some examples of the topmost DOM tree nodes in earlier

sections such as the <html> element, which can be accessed with

document.documentElement property. Also, the <head> element can be accessed with

document.head property, and the <body> element can be accessed with

document.body property.

There is also an option to get only element nodes with the parentElement, as shown in

the example below:

Figure 119 - Accessing Parent Nodes Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-navigation.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

414 | Page

Accessing the Sibling Nodes

To access the previous and next node in the DOM tree, you can use the previousSibling

and nextSibling properties respectively.

Let’s look at an example:

Figure 120 - Accessing Sibling Nodes Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-navigation.php)

To skip any whitespace text nodes, you can use the previousElementSibling and

nextElementSibling as alternatives to get the previous and next sibling elements. If no

such sibling is found, these properties will return null values.

Let’s see an example below:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

415 | Page

Figure 121 - Accessing Sibling Nodes Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-navigation.php)

The textContent property used here signifies the text content of a node and all of its

descendants.

Types of DOM Nodes

The DOM tree is comprised of different types of nodes that includes elements, text,

comments and many more.

Every node has a nodeType property that can help you understand how you can access

and manipulate said node. The following table provides a list with the most important

and used node types that one needs to know:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

416 | Page

Figure 122 - Table of Most Common Types of DOM Nodes (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

417 | Page

5.3. JavaScript & BOM

JavaScript Window - The Browser Object Model

The Browser Object Model (BOM) allows JavaScript to "talk to" the browser.

The Browser Object Model (BOM)

There are no official standards for the Browser Object Model (BOM).

Since modern browsers have implemented (almost) the same methods and properties

for JavaScript interactivity, it is often referred to, as methods and properties of the BOM.

The Window Object

The window object is supported by all browsers. It represents the browser's window.

All global JavaScript objects, functions, and variables automatically become members

of the window object.

Global variables are properties of the window object.

Global functions are methods of the window object.

Even the document object (of the HTML DOM) is a property of the window object:

Figure 123 – The Window Object on JS BOM (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window.php)

Is the same as:

Figure 124 – The Window Object on JS BOM – alternative version (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-window.php)

418 | Page

Window Size

Two properties can be used to determine the size of the browser window.

Both properties return the sizes in pixels:

• window.innerHeight - the inner height of the browser window (in pixels)

• window.innerWidth - the inner width of the browser window (in pixels)

Figure 125 – The Window size alternatives (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window.php)

Other Window Methods

Some other methods:

• window.open() - open a new window

• window.close() - close the current window

• window.moveTo() - move the current window

• window.resizeTo() - resize the current window

419 | Page

JavaScript Window Screen
The window.screen object contains information about the user's screen.

The window.screen object can be written without the window prefix.

Properties:

• screen.width

• screen.height

• screen.availWidth

• screen.availHeight

• screen.colorDepth

• screen.pixelDepth

Window Screen Width

The screen.width property returns the width of the visitor's screen in pixels.

Figure 126 – The screen.width property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window.php)

Window Screen Height

The screen.height property returns the height of the visitor's screen in pixels.

420 | Page

Figure 127 – The Window screen.height property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window.php)

Window Screen Available Width

The screen.availWidth property returns the width of the visitor's screen, in pixels, minus

interface features like the Windows Taskbar.

Figure 128 – The Window screen.availWidth property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window.php)

Window Screen Available Height

The screen.availHeight property returns the height of the visitor's screen, in pixels,

minus interface features like the Windows Taskbar.

421 | Page

Figure 129 – The Window screen.availWidth property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window.php)

Window Screen Colour Depth

The screen.colorDepth property returns the number of bits used to display one colour.

All modern computers use 24 bit or 32-bit hardware for colour resolution:

24 bits = 16,777,216 different "True Colours"

32 bits = 4,294,967,296 different "Deep Colours"

Older computers used 16 bits: 65,536 different "High Colours" resolution.

Very old computers, and old cell phones used 8 bits: 256 different "VGA colours".

Figure 130 – The Window screen.availWidth property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window.php)

Window Screen Pixel Depth

The screen.pixelDepth property returns the pixel depth of the screen.

422 | Page

Figure 131– The Window screen.pixelDepth property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window.php)

423 | Page

JavaScript Window Location

The window.location object can be used to get the current page address (URL) and to

redirect the browser to a new page.

Window Location

The window.location object can be written without the window prefix.

Some examples:

• window.location.href returns the href (URL) of the current page

• window.location.hostname returns the domain name of the web host

• window.location.pathname returns the path and filename of the current page

• window.location.protocol returns the web protocol used (http: or https:)

• window.location.assign() loads a new document

Window Location Href

The window.location.href property returns the URL of the current page.

Figure 132 – The Window window.location.href property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window-location.php)

424 | Page

Window Location Hostname

The window.location.hostname property returns the name of the internet host (of the

current page).

Figure 133 – The Window window.location.hostname property (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-window-location.php)

Window Location Pathname

The window.location.pathname property returns the pathname of the current page.

Figure 134 – The Window window.location.pathname property (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-window-location.php)

425 | Page

Window Location Protocol

The window.location.protocol property returns the web protocol of the page.

Figure 135 – The Window window.location.protocol property (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-window-location.php)

Window Location Port

The window.location.port property returns the number of the internet host port (of the

current page).

Figure 136 – The Window window.location.port property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window-location.php)

426 | Page

Window Location Assign

The window.location.assign() method loads a new document.

Figure 137 – The Window window.location.assign() property (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-window-location.php)

JavaScript Window History

The window.history object contains the browsers history.

Window History

The window.history object can be written without the window prefix.

To protect the privacy of the users, there are limitations to how JavaScript can access

this object.

Some methods:

• history.back() - same as clicking back in the browser

• history.forward() - same as clicking forward in the browser

Window History Back

The history.back() method loads the previous URL in the history list.

This is the same as clicking the Back button in the browser.

427 | Page

Figure 138 – The Window history.back() property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window-location.php)

Window History Forward

The history.forward() method loads the next URL in the history list.

This is the same as clicking the Forward button in the browser.

Figure 139 – The Window history.forward() property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window-location.php)

428 | Page

JavaScript Window Navigator
The window.navigator object contains information about the visitor's browser.

Window Navigator

The window.navigator object can be written without the window prefix.

Some examples:

• navigator.appName

• navigator.appCodeName

• navigator.platform

Browser Cookies

The cookieEnabled property returns true if cookies are enabled, otherwise false:

Figure 140 – The Window history.forward() property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window-location.php)

Browser Application Name

The appName property returns the application name of the browser.

Browser Application Code Name

The appCodeName property returns the application code name of the browser.

The Browser Engine

The product property returns the product name of the browser engine.

The Browser Version

The appVersion property returns version information about the browser.

429 | Page

The Browser Agent

The userAgent property returns the user-agent header sent by the browser to the server.

Warning !!!

The information from the navigator object can often be misleading, and should not be

used to detect browser versions because:

• Different browsers can use the same name

• The navigator data can be changed by the browser owner

• Some browsers misidentify themselves to bypass site tests

• Browsers cannot report new operating systems, released later than the browser

The Browser Platform

The platform property returns the browser platform (operating system).

The Browser Language

The language property returns the browser's language.

Is The Browser Online?

The onLine property returns true if the browser is online.

Is Java Enabled?

The javaEnabled() method returns true if Java is enabled.

JavaScript Popup Boxes

JavaScript has three kind of popup boxes: Alert box, Confirm box, and Prompt box.

https://www.w3schools.com/java/default.asp

430 | Page

Alert Box

An alert box is often used if you want to make sure information comes through to the

user.

When an alert box pops up, the user will have to click "OK" to proceed.

Syntax:

Figure 141– Alert box syntax (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dialog-

boxes.php)

The window.alert() method can be written without the window prefix.

Figure 142 – The window.alert() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dialog-boxes.php)

Confirm Box

A confirm box is often used if you want the user to verify or accept something.

When a confirm box pops up, the user will have to click either "OK" or "Cancel" to

proceed.

If the user clicks "OK", the box returns true. If the user clicks "Cancel", the box returns

false.

Syntax:

Figure 143 – The window.alert() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dialog-boxes.php)

431 | Page

The window.confirm() method can be written without the window prefix.

Figure 144 – The window.confirm() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dialog-boxes.php)

Prompt Box

A prompt box is often used if you want the user to input a value before entering a page.

When a prompt box pops up, the user will have to click either "OK" or "Cancel" to

proceed after entering an input value.

If the user clicks "OK" the box returns the input value. If the user clicks "Cancel" the box

returns null.

Syntax:

Figure 145 – The prompt box syntax (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

dialog-boxes.php)

The window.prompt() method can be written without the window prefix.

432 | Page

Figure 146 – The window.prompt() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dialog-boxes.php)

Line Breaks

To display line breaks inside a popup box, use a back-slash followed by the character

n.

Figure 147 – Displaying line breaks inside a popup box (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dialog-boxes.php)

JavaScript Timing Events

Timing Events

The window object allows execution of code at specified time intervals.

These time intervals are called timing events.

The two key methods to use with JavaScript are:

● setTimeout(function,milliseconds)

Executes a function, after waiting a specified number of milliseconds.

● setInterval(function,milliseconds)

Same as setTimeout(), but repeats the execution of the function continuously.

The setTimeout() and setInterval() are both methods of the HTML DOM Window object.

433 | Page

The setTimeout() Method

Figure 148 – The setTimeout() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

The window.setTimeout() method can be written without the window prefix.

The first parameter is a function to be executed.

The second parameter indicates the number of milliseconds before execution.

Figure 149 – The window.setTimeout() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

How to Stop the Execution?

The clearTimeout() method stops the execution of the function specified in setTimeout().

Figure 150 – The clearTimeOut() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

434 | Page

The window.clearTimeout() method can be written without the window prefix.

The clearTimeout() method uses the variable returned from setTimeout():

Figure 151 – The window.clearTimeout() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

If the function has not already been executed, you can stop the execution by calling the

clearTimeout() method:

Figure 152 – The clearTimeout() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

The setInterval() Method

The setInterval() method repeats a given function at every given time-interval.

Figure 153 – The setInterval() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

The window.setInterval() method can be written without the window prefix.

The first parameter is the function to be executed.

The second parameter indicates the length of the time-interval between each execution.

435 | Page

This example executes a function called "myTimer" once every second (like a digital

watch).

Figure 154 – The window.setInterval() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

How to Stop the Execution?

The clearInterval() method stops the executions of the function specified in the

setInterval() method.

Figure 155 – The clearInterval() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

The window.clearInterval() method can be written without the window prefix.

The clearInterval() method uses the variable returned from setInterval():

436 | Page

Figure 156 – The variable returned from setInterval() (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

Figure 157– The variable returned from setInterval() (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

437 | Page

5.4. JavaScript Advanced

JavaScript Date and Time

Note that the JavaScript Date object is provided by default as a global object in all

JavaScript environments, thus you don't have to import it.

Date objects contain several methods for setting, getting, and manipulating dates and

times.

Creating Date Objects

You can create a new Date object by passing the string representation of a date to the

Date() constructor, or by passing the individual components of a date as parameters to

the Date() constructor (year, month, day, hour, minute, second, millisecond).

The following examples create date objects:

• // Create a date object for today's date: const now = new Date(); //

• Outputs today's date and time in standard format console.log(now); //

• Outputs the day, date, month and year console.log(now.toDateString()); //

• Outputs the hour, minute and second console.log(now.toTimeString());

• Outputs the hour, minute, second and milliseconds

console.log(now.toLocaleString());

• Outputs the year console.log(now.getFullYear());

• Outputs the month (from 0-11) console.log(now.getMonth());

• Outputs the day (from 1-31) console.log(now.getDate());

• Outputs the day of the week (from 0-6) console.log(now.getDay());

• Outputs the hour (from 0-23) console.log(now.getHours());

• Outputs the minute (from 0-59) console.log(now.getMinutes());

• Outputs the second (from 0-59) console.log(now.getSeconds());

• Outputs the millisecond (from 0-999) console.log(now.getMilliseconds());

438 | Page

• Outputs the number of milliseconds since the beginning of the day

console.log(now.getTime());

• Outputs the number of seconds since 01.01.1970 console.log(now.getTime() /

1000);

Examples of outputs:

Thu, 22 Aug 2019 11:37:45 GMT

Thu Aug 22 2019 11:37:45 GMT+0000 (Coordinated Universal Time)

11:37:45 GMT+0000 (Coordinated Universal Time)

11:37:45 GMT+0000 (Coordinated Universal Time) 2019 8 22 4 11 37 45

Today is a Thursday, the 22nd of August, 2019.

You can check a practical example here.

The Date() constructor can also take an integer value representing the number of

milliseconds since 01.01.1970, or the string representation of a date.

If you pass an integer value representing the number of milliseconds since 01.01.1970,

the constructor will create a date object representing this date and time.

If you pass a string representation of a date, the constructor will try to parse this date

and create a date object representing this date and time. If the string cannot be parsed,

the constructor will create an invalid date object.

Creating Date Objects With Moment.js

Moment.js is a JavaScript library which makes working with dates and times easy.

To use Moment.js in your project, you have to install it first with a package manager

such as npm or yarn, as follows:

npm install moment yarn add moment

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=passing-parameters-to-the-date-object

439 | Page

After the installation, you can import Moment.js into your JavaScript file with the import

statement:

import moment from 'moment';

In the following example we use Moment.js to create a date object for today's date and

time, and then we use the format() method to output the date and time in different

formats:

import moment from 'moment'; // Create a date object for today's date

and time const now = moment(); // Outputs today's date and time in

standard format console.log(now.format()); // Outputs the day, date,

month and year console.log(now.format('dddd, MMMM D, YYYY')); //

Outputs the hour, minute and second console.log(now.format('h:mm:ss

a')); // Outputs the day, date, month, year, hour, minute and // second

console.log(now.format('ddd, hA'));

Outputs:

2019-08-22T15:25:33+04:00 Thursday, August 22, 2019 3:25:33 pm Thu, 3PM

Date Arithmetic

Date objects can be manipulated to change dates and times. Date objects have a set()

method which can be used to set the year, month, day, hour, minute, second, and

millisecond of a date.

When using set() , the object is updated in-place, thus you don't have to create a new

Date object.

The following example uses the set() method to set the hour and minute of a date:

const now = new Date(); // Outputs the hour, minute and second

console.log(now.toLocaleString()); // Changes the hour to 12 and the

440 | Page

minute to 45 now.setHours(12); now.setMinutes(45);

console.log(now.toLocaleString());

Outputs:

11:56:09 AM 12:45:09 PM

The setHours() method can also be used to set the hour and minute, and the

setMinutes() method can also be used to set the minute and second.

The Date object also has getters to get the year, month, day, hour, minute, second and

millisecond of a date.

The following example uses the get() method to get the hour and minute of a date:

const now = new Date(); // Outputs the hour, minute and second

console.log(now.toLocaleString()); // Outputs the hour and minute

console.log(now.getHours() + ':' + now.getMinutes());

Outputs:

11:56:09 AM 11:56

When using the set() method, the object is updated in-place, thus you don't have to

create a new Date object.

The setDate() method can be used to set the day of a date. The setMonth() method can

be used to set the month of a date. The setFullYear() method can be used to set the

year of a date.

441 | Page

The getDate() method can be used to get the day of a date. The getMonth() method can

be used to get the month of a date. The getFullYear() can be used to get the year of a

date.

The following example uses the set() , setDate() , setMonth() , setFullYear() , get() ,

getDate() , getMonth() and getFullYear() methods to set and get the year, month and

day of a date:

const now = new Date(); now.setDate(1); // Sets the day to the first

day of the month now.setMonth(0); // Sets the month to January

now.setFullYear(2019); // Sets the year to 2019

console.log(now.toLocaleString()); now.setDate(now.getDate() + 10); //

Adds 10

JavaScript Math Operations

You can perform numerical operations using JavaScript. This can be done with the help

of the + (addition), - (subtraction), * (multiplication), / (division) and % (modulus)

operators.

In the example below, we use the addition operator to add two numbers:

var x = 10; var y = 5; var z = x + y;

This will give the value of z as 15.

Similarly, we can use the - (subtraction), * (multiplication), / (division) and % (modulus)

operators to perform their respective operations.

The modulus operator returns the remainder of a division operation. For example, if we

divide 10 by 3, the remainder will be 1. Therefore, 10 % 3 will give the output 1.

442 | Page

Apart from these basic arithmetic operations, JavaScript also provides some built-in

mathematical functions. These functions can be used to perform more complex

operations.

Some of the most commonly used mathematical functions are:

• Math.abs(x) : This function returns the absolute value of a number. For example,

Math.abs(-10) will return 10.

• Math.ceil(x) : This function rounds a number up to the nearest integer value. For

example, Math.ceil(4.7) will return 5.

• Math.floor(x) : This function rounds a number down to the nearest integer value.

For example, Math.floor(4.7) will return 4.

• Math.max(x, y, ...) : This function returns the maximum of the arguments passed

to it. For example, Math.max(10, 5, 20) will return 20.

• Math.min(x, y, ...) : This function returns the minimum of the arguments passed

to it. For example, Math.min(10, 5, 20) will return 5.

• Math.pow(x, y) : This function returns the value of x raised to the power of y. For

example, Math.pow(2, 3) will return 8.

• Math.random() : This function returns a random number between 0 and 1.

• Math.sqrt(x) : This function returns the square root of x. For example,

Math.sqrt(16) will return 4.

You can learn more about the Math object and its properties and methods from the

JavaScript Math reference.

JavaScript Type Conversions

You can convert a value to a specific data type using built-in methods, such as parseInt()

for converting a value to an integer, or parseFloat() for converting a value to a float.

443 | Page

You can also use the Number() method to convert a value to a number, or the Boolean()

method to convert a value to a boolean.

In the following example we will convert a string to a number using the Number() method:

var x = "100"; var y = Number(x); console.log(y); // 100

In this example we have a string with the value "100". We convert this string to a number

using the Number() method, and then we print the value of the number to the console.

You can also use the unary + operator to convert a value to a number. For example:

var x = "100"; var y = +x; console.log(y); // 100

In this example we have a string with the value "100". We use the unary + operator to

convert the string to a number, and then we print the value of the number to the console.

You can use the parseInt() method to convert a string to an integer, or the parseFloat()

method to convert a string to a float.

For example:

var x = "100.50"; var y = parseInt(x); console.log(y); // 100 var z =

parseFloat(x); console.log(z); // 100.5

In this example we have a string with the value "100.50". We use the parseInt() method

to convert the string to an integer, and then we print the value of the integer to the

console.

We also use the parseFloat() method to convert the string to a float, and then we print

the value of the float to the console.

444 | Page

You can use the Boolean() method to convert a value to a boolean.

For example:

var x = "100"; var y = Boolean(x); console.log(y); // true

In this example we have a string with the value "100". We convert the string to a boolean

using the Boolean() method, and then we print the value of the boolean to the console.

You can use the !! operator to convert a value to a boolean. For example:

var x = "100"; var y = !!x; console.log(y); // true

In this example we have a string with the value "100". We use the !! operator to convert

the string to a boolean, and then we print the value of the boolean to the console.

If you want to convert a value to a string, you can use the toString() method.

For example:

var x = 100; var y = x.toString(); console.log(y); // "100"

In this example we have a number with the value 100. We convert the number to a string

using the toString() method, and then we print the string to the console.

If you want to convert a value to an array, you can use the Array.from() method.

For example:

445 | Page

var x = "100"; var y = Array.from(x); console.log(y); // ["1", "0",

"0"]

In this example we have a string with the value "100". We convert the string to an array

using the Array.from() method, and then we print the array to the console.

If you want to convert a value to an object, you can use the Object() method.

For example:

var x = "100"; var y = Object(x); console.log(y); // { "0": "1", "1":

"0", "2": "0" }

In this example we have a string with the value "100". We convert the string to an object

using the Object() method, and then we print the object to the console.

JavaScript Event Listeners

DOM Event Listeners

JavaScript Event Listeners allow you to define functions that will run when a specific

event occurs on an element in the DOM.

There are a number of different events that can occur on a DOM element, such as when

the element is clicked, hovered over, or even when the element's contents are changed.

To add an event listener to an element, you first need to select the element using one

of the DOM selection methods, such as document.querySelector() or

document.getElementById() .

Once the element is selected, you can use the addEventListener() method to attach an

event listener to the element.

446 | Page

The addEventListener() method takes two arguments: the name of the event to listen

for, and a function to run when the event occurs.

For example, to add a click event listener to a button element, you would use the

following code:

button . addEventListener ("click" , function () { console . log (

"The button was clicked!") ; }) ;

In the code above, when the button element is clicked, the function passed to the

addEventListener() method will be executed.

You can also pass a named function to the addEventListener() method, instead of an

anonymous function:

function handleClick () { console . log ("The button was clicked!")

; } button . addEventListener ("click" , handleClick) ;

DOM Event Types

There are a number of different events that can occur on a DOM element.

The most common events are:

• click

• mouseover

• mouseout

• keypress

• change

• submit

447 | Page

You can find a complete list of DOM events on the Mozilla Developer Network.

DOM Event Object

When an event listener function is called, it is passed an event object as an argument.

The event object contains information about the event that occurred, such as the type

of event, the element that the event occurred on, and any event-specific data.

For example, the click event object contains information about the click event, such as

the x and y coordinates of the click.

For example, to log the x and y coordinates of a click event, you would use the following

code:

button . addEventListener ("click" , function () { console . log (

"x: " + this . clientX + ", y: " + this . clientY) ; }) ;

In the code above, the this keyword refers to the event object, and the clientX and clientY

properties are used to access the x and y coordinates of the click event.

DOM Event Delegation

DOM Event Delegation is a technique for attaching event listeners to elements that do

not yet exist in the DOM.

This is useful when you have a large number of elements that you want to add event

listeners to, but do not want to add an event listener to each element individually.

448 | Page

For example, if you have a list of 100 items, and you want to add a click event listener

to each item, you could use event delegation to add a single click event listener to the

parent element of the list, and have that listener function handle the click events for all

of the child elements.

To use event delegation, you first need to select the parent element of the elements you

want to add event listeners to.

You can then use the addEventListener() method to attach an event listener to the

parent element.

The addEventListener() method takes two arguments: the name of the event to listen

for, and a function to run when the event occurs.

The function passed to the addEventListener() method will be executed whenever the

event occurs on any of the child elements of the parent element.

For example, to add a click event listener to all of the list items in a list, you would use

the following code:

var listItems = document . querySelectorAll ("li") ; listItems . forEach (function (listItem

) { listItem . addEventListener ("click" , function () { console . log ("The list item was

clicked!") ; }) ; }) ;

In the code above, a click event listener is added to each list item individually.

This can be inefficient if there are a large number of list items.

Instead, you could use event delegation to add a single click event listener to the parent

element of the list items:

449 | Page

var list = document . querySelector ("ul") ; list . addEventListener ("click" , function (

event) { if (event . target . tagName === "LI") { console . log ("The list item was clicked!"

) ; } }) ;

In the code above, a click event listener is added to the parent element of the list items.

The function passed to the addEventListener() method checks the tagName property of

the element that was clicked to see if it is an element.

If it is an element, then the function logs a message to the console.

This technique can be used to add event listeners to any type of element, not just list

items.

For example, you could use event delegation to add a click event listener to all of the

buttons in a document:

var buttons = document . querySelectorAll ("button") ; buttons . forEach (function (

button) { button . addEventListener ("click" , function () { console . log ("The button

was clicked!") ; }) ; }) ;

Or you could use event delegation to add a click event listener to all of the links in a

document:

var links = document . querySelectorAll ("a") ; links . forEach (function (link) { link .

addEventListener ("click" , function () { console . log ("The link was clicked!") ; }) ; })

;

Event Delegation Summary

In this tutorial you learned about DOM event listeners in JavaScript.

450 | Page

You learned how to use the addEventListener() method to attach event listeners to

elements in the DOM.

You also learned about the different events that can occur on a DOM element, and how

to access the event object from within an event listener function.

Finally, you learned about DOM event delegation, and how to use it to attach event

listeners to elements that do not yet exist in the DOM.

JavaScript Event Propagation

When an event occurs on an element, that event can be recognized by JavaScript and

acted upon.

For example, if you click on a button on a web page, you can program JavaScript to

recognize that event and take some action.

The event that occurred is a click event.

When you click on an element, the click event is fired on the element that was clicked.

The event then propagates up the DOM tree.

This means that if there is an event handler on a parent element, that event handler will

be executed.

If there is an event handler on a grandparent element, that event handler will be

executed.

451 | Page

This propagation up the DOM tree continues until the event reaches the root element of

the DOM tree or until the event is stopped.

When the event reaches the root element, the event has bubbled all the way up the

DOM tree.

The event will then propagate back down the DOM tree in the same way, from the root

element to the element that was clicked.

This is called event bubbling. The following diagram shows event bubbling.

You can handle events on any element in the DOM tree.

You can also stop the propagation of an event.

For example, you might have an event handler on a parent element, and you do not

want that event handler to be executed when the event occurs on a child element.

In that case, you can stop the event from propagating up the DOM tree.

This is called event propagation.

The event does not reach the root element, and it does not propagate back down the

DOM tree.

You can also stop the propagation of an event at any point in the DOM tree.

For example, you might have an event handler on a grandparent element, and you do

not want that event handler to be executed when the event occurs on a grandchild

element.

https://plnkr.co/edit/?p=preview&preview

452 | Page

In that case, you can stop the event from propagating down the DOM tree. This is called

event capture.

In summary, when an event occurs on an element, that event can be recognized by

JavaScript and acted upon.

The event propagates up the DOM tree, and then back down the DOM tree.

You can handle events on any element in the DOM tree.

You can also stop the propagation of an event.

JavaScript Borrowing Methods

We will use an example of an object that contains a property we need to borrow.

var myObject = {

someProperty: “foo”,

};

We can borrow the someProperty property from myObject like this:

var myProperty = myObject.someProperty;

myProperty will now contain the value “foo”.

We can also use the same syntax to borrow methods from objects.

453 | Page

For example, if we have an object with a method we want to borrow:

var myObject = {

someMethod: function() {

// do something

}

};

We can borrow the someMethod method like this:

var myMethod = myObject.someMethod;

We can now call myMethod like a normal function.

 myMethod();

JavaScript Hoisting

Hoisting is a behaviour that is unique to JavaScript. It is a concept that is often

misunderstood. Many developers believe that JavaScript hoists variables and function

declarations to the top of the scope.

This is not entirely accurate. What JavaScript actually does is move declarations to the

top of the scope, but not initialization. This can lead to some unexpected behaviour.

Consider the following code:

454 | Page

var foo = 1; function bar() { if (!foo) { var foo = 10; } console.log(foo); } bar();

What do you think the output of this code will be?

If you guessed 10, you would be wrong. The output of this code is 1.

This is because the declaration of foo is hoisted to the top of the scope, but the

initialization is not. When the if statement is executed, foo is undefined and is thus set

to 10.

This can be a bit confusing, but it is important to understand how hoisting works in

JavaScript. It can help you to avoid some common mistakes.

JavaScript Closures

JavaScript closure is an inner function that has access to the variables in the outer

(enclosing) function’s scope chain. The closure has three scope chains: it has access

to its own scope (variables defined between its curly brackets), it has access to the outer

function’s variables, and it has access to the global variables.

JavaScript closures are created when the inner function is made within the outer

function. Closures are used extensively in JavaScript libraries such as jQuery.

Here is a simple example of a closure in JavaScript:

function outerFunction(x) {

 var innerFunction = function(y) {

 return x + y;

 }

 return innerFunction;

}

455 | Page

var add5 = outerFunction(5);

var add10 = outerFunction(10);

console.log(add5(2)); // 7

console.log(add10(2)); // 12

In the example above, we have a function outerFunction which has a single parameter

x. This function contains a function innerFunction which has a single parameter y. The

innerFunction returns the sum of x and y.

When we call the outerFunction with a value, it returns the innerFunction. When we call

the function returned by the outerFunction with a value, it returns the sum of the value

we passed to the outerFunction and the value we passed to the innerFunction.

In the example above, we have two closures: add5 and add10. When we call add5(2),

it returns 7 because 5 is passed to the outerFunction as the value of x, and 2 is passed

to the innerFunction as the value of y. When we call add10(2), it returns 12 because 10

is passed to the outerFunction as the value of x, and 2 is passed to the innerFunction

as the value of y.

A closure is a function that makes use of variables defined in outer functions that have

previously returned. In the following example, the inner function plus() is making use of

the variable num that was defined in the outer function returnNotification():

function returnNotification() {

 var num = 42;

 function plus() {

 return num + 1;

456 | Page

 }

 return plus;

}

var result = returnNotification();

console.log(result()); // 43

In the example above, we have a function returnNotification(). This function has a local

variable num and a function plus(). The plus() function returns the value of num plus 1.

The returnNotification() function returns the plus() function.

We assign the return value of the returnNotification() function to the variable result.

When we call result(), it calls the plus() function and returns the value of num plus 1.

A closure is a function that makes use of variables defined in outer functions that have

previously returned. In the following example, the inner function plus() is making use of

the variable num that was defined in the outer function returnNotification():

function returnNotification() {

 var num = 42;

 function plus() {

 return num + 1;

 }

 return plus;

}

457 | Page

var result = returnNotification();

console.log(result()); // 43

In the example above, we have a function returnNotification(). This function has a local

variable num and a function plus(). The plus() function returns the value of num plus 1.

The returnNotification() function returns the plus() function.

We assign the return value of the returnNotification() function to the variable result.

When we call result(), it calls the plus() function and returns the value of num plus 1.

Closures are often used in JavaScript libraries such as jQuery. In the following example,

we are using the jQuery library to create a button. When the button is clicked, an alert

box is displayed with the text "Hello world!":

$(function() {

 var button = $('button');

 button.click(function() {

 alert('Hello world!');

 });

});

In the example above, we have a button element with an id of "button". We are using

the jQuery library to select the button element. We are then using the click() method to

register a function that will be executed when the button is clicked.

The function that is executed when the button is clicked is a closure. It has access to

the variables in the outer function, which in this case is the button element. When the

function is executed, it displays an alert box with the text "Hello world!".

458 | Page

JavaScript Strict Mode

What is Strict Mode in JavaScript?

The strict mode is a way to opt in to a restricted variant of JavaScript. Strict mode isn't

just a subset: it intentionally has different semantics from normal code. Browsers aren't

required to run JS code in strict mode and many don't.

Strict mode makes it easier to write "secure" JavaScript. Strict mode changes previously

accepted "bad syntax" into real errors.

SyntaxError: Unexpected eval or arguments in strict mode.

Strict mode also solves some mistakes that silently failed in JavaScript, throwing

exceptions.

• Deleting a variable or a function.

• Using a variable that isn't declared.

• Deleting an object's property.

• Attempting to change a read-only property.

• Adding a property to an object that is not extensible.

• Using an object that has been frozen or sealed.

• Writing to a read-only property.

• Attempting to change the DontDelete attribute on a property.

• Assigning a value to a read-only global variable.

• Incrementing or decrementing a read-only property.

• Attempting to change the DontDelete attribute on a function.

• Assigning a value to a read-only global function.

• Attempting to change the prototype of a function.

459 | Page

The strict mode also prevents, or throws errors, when "unsafe" actions are taken.

• Using a variable without declaring it.

• Creating a global variable (without using the var statement).

• Deleting a variable or a function.

• Deleting an object's property.

• Using an object that has been frozen or sealed.

• Attempting to change the DontDelete attribute on a property.

• Assigning a value to a read-only global function.

• Incrementing or decrementing a read-only property.

• Attempting to change the prototype of a function.

In order to execute your code in strict mode, you need to add the "use strict"; directive

to the beginning of your code. The directive is not a string, but rather a literal expression

that appears at the top of a file, script, or function body.

"use strict";

The directive can be placed at either the beginning of a script or at the beginning of a

function.

Example 1: Placing the directive at the beginning of a script.

"use strict"; x = 3.14; // This will cause an error because x is not declared.

Example 2: Placing the directive at the beginning of a function.

function myFunction() { "use strict"; y = 3.14; // This will cause an error because y is not

declared. }

460 | Page

If the strict mode is used inside a function, the strict mode will only be applied to the

function. If the strict mode is used at the top level of a script, the strict mode will be

applied to the whole script.

If the strict mode is used at the top level of a script, the strict mode will be applied to the

whole script.

If the strict mode is used inside a function, the strict mode will only be applied to the

function.

In strict mode, any reference to an undeclared variable will cause a reference error.

function myFunction() { "use strict"; x = 3.14; // This will cause an error because x is not

declared. }

In strict mode, any assignment to a non-writable global variable, a non-writable element

of an arguments object, or a non-writable property of this will cause an error.

JavaScript JSON Parsing

What is JSON?

JSON stands for JavaScript Object Notation. It’s a lightweight data-interchange format

that allows you to exchange and store the data in an organized, easy-to-access manner.

The best thing about it is that its syntax resembles plain English so even if you don’t

know anything about programming or coding, there are still chances of understanding

what this code means!

461 | Page

Parsing JSON Data in JavaScript

The following example shows how to parse a string and create an object from it. You

should always prefer parsing data as shown below:

var jsonString = '{"name":"John","age":30,"city":"New York"}'; var obj =

JSON.parse(jsonString); console.log('Name: ',obj['name'],' Age:',obj['age'], ' City:' , obj

['city']); // Outputs Name : John, age : 30 and city as New york

Parsing Nested JSON Data in JavaScript

The following example shows how to parse nested data from a string into an object

using the eval() function (which is not recommended). You can also use the same

method for parsing nested objects but you need to be careful while doing so because if

there are any errors then it will throw exceptions which might crash your program!

Encoding Data as JSON in JavaScript

The following example shows how to encode data into a string using the JSON.stringify()

function.

var obj = { name : 'John', age: 30, city:'New York' }; var jsonString = JSON.stringify(obj);

console.log('JSON String is ',jsonString); // Outputs the stringified object as a JSON

JavaScript Error Handling

JavaScript is a very flexible language, which means that there are many ways to write

code. This flexibility can lead to errors in your program if you're not careful about how

you structure it.

One of the most common mistakes developers make is assuming that all code will

execute correctly. This assumption can cause problems because JavaScript is an

462 | Page

interpreted language, meaning that each line of code is executed as it's read by the

interpreter. If there's an error in your code, the interpreter will stop executing at that point

and throw an error message.

This tutorial will show you how to deal with errors gracefully so that your program can

continue running even if there are some problems with the input data or other parts of

the code.

The first thing you need to do is identify where the potential errors might occur in your

code. For example, if you're reading data from a file, there's a possibility that the file

doesn't exist or that it's been corrupted. If you're working with user input, there's a

chance that the users will enter invalid data. Once you've identified these potential

sources of error, you can start writing code to deal with them gracefully.

One common way to deal with errors is to use try/catch blocks. These blocks allow you

to "try" some code and "catch" any errors that occur while it's executing. The syntax for

a try/catch block looks like this:

try { // Code to try goes here } catch (error) { // Code to handle errors goes here }

The code inside the try block will be executed first. If no errors occur, the code in the

catch block will never be executed. However, if an error does occur, execution will jump

directly to the catch block and any subsequent code in the try block will be skipped.

Let's look at an example of how this works. Suppose you have a function that reads data

from a file and prints it to the console. However, there's a possibility that the file doesn't

exist:

function readFile(filename) { try { // Code to read and print the contents of "filename"

goes here } catch (error) { console.log("Error reading file: " + error); } }

463 | Page

In this example, the readFile function will try to read and print the contents of a file. If an

error occurs while reading the file, it will be caught by the catch block and printed to the

console.

It's important to note that only errors that occur inside the try block will be caught by the

catch block. If there's an error in the catch block itself (for example, if you forget to close

a curly brace), it won't be caught and your program will crash.

Another way to deal with errors is to use JavaScript's built-in Error object. The Error

object can be used to create custom error messages which can then be passed into a

throw statement:

throw new Error("This is a custom error message");

When this code is executed, an error will be thrown and execution of the current function

will stop. Any subsequent code in the function will not be executed.

You can also use the Error object to deal with errors that occur inside asynchronous

code. For example, suppose you have a function that makes an HTTP request and

returns the response data:

function makeRequest(url) { return new Promise((resolve, reject) => { http.get(url,

(response) => { // Code to handle the response goes here }); }); }

This function returns a promise, which means that the data returned by the HTTP

request will be available at some point in the future. If an error occurs while making the

request (for example, if the URL is invalid), it will be caught by JavaScript's built-in error

handling and rejected with an error message.

464 | Page

This rejection will cause the promise to be returned with an error, which can then be

handled by the code that called makeRequest :

makeRequest("http://www.example.com") .then((data) => { // Code to handle the data

goes here }) .catch((error) => { console.log("Error making request: " + error); });

In this example, we've registered a callback function for the "then" event which will be

called if the promise is resolved successfully. We've also registered a callback function

for the "catch" event which will be called if an error occurs. This allows us to deal with

errors gracefully and continue executing our code even if there are some problems with

the input data or other parts of the code.

JavaScript Regular Expressions

Regular expressions are a powerful tool used to perform pattern matching and "search-

and-replace" functions on text.

A regular expression is simply a sequence of characters that defines a particular search

pattern. For example, the following regex would match any string containing an

uppercase letter A: /A/.

Regular expressions can be used to perform a wide variety of tasks, such as:

• Extracting information from a given string (e.g., an email address);

• Validating user input (e.g., ensuring that a password is strong enough);

• Searching for and replacing text in a given string (e.g., changing all occurrences

of "a" to "b"),

• Formatting text (e.g., adding commas between words),

• Generating random strings (e.g., creating unique IDs or passwords).

• And much more!

465 | Page

In JavaScript, regular expressions are also objects. These objects contain a set of

methods that can be used to perform various operations on strings, such as searching

for patterns or replacing text.

Creating Regular Expressions in JavaScript

There are two ways to create regular expressions in JavaScript: using a regular

expression literal or the RegExp() constructor function.

A regular expression literal is simply a string that contains the pattern you want to match,

enclosed within two forward slashes (/). For example:

const regex = /abc/ ; console .log(regex); // => /abc/

The above code creates a new regular expression object containing the pattern abc and

assigns it to the variable regex . The value of this variable can then be used like any

other JavaScript object. In particular, we can use its methods for performing various

operations on strings.

The RegExp() constructor function can also be used to create regular expressions. This

function takes two arguments: the first is a string containing the pattern you want to

match, and the second is an optional "flags" argument that specifies certain settings for

how the regex should work. For example:

const regex = new RegExp ('abc'); console .log(regex); // => /abc/ const flagsRegex =

new RegExp ('123' , 'i'); console .log(flagsRegex); // => /123/i; i stands for case-

insensitive matching

The above code creates two new regular expression objects. The first contains the

pattern abc and is case-sensitive (the default setting). The second object also has a

466 | Page

pattern of 123 but its matching will be case-insensitive, thanks to the i flag that was

passed as the second argument to RegExp() .

Note: In JavaScript, regexes created using literal notation are immutable; they cannot

have their properties or methods changed after they've been defined. On the other hand,

regexes created with RegExp() can be modified at any time because it's just another

constructor function like Date , Array , etc.

JavaScript Form Validation

JavaScript is a client-side scripting language, which means that the script runs on your

visitor's computer. This allows you to do things like check if an email address has been

entered correctly before it gets sent off to the server. It also reduces strain on your server

because form data doesn't have to be submitted until after it has been checked for errors

by JavaScript.

The first thing you need to do is create a form. You can use the following code:

<form action="yourpage.php" method="post"> <p>Name:</p><input type="text"

name="name">
 <p>Email Address:</p><input type="text" name= "email">

</form>

This will create a basic form with two fields, one for the name and one for an email

address. The action attribute tells the browser where to send the data when it is

submitted, in this case yourpage.php . You can change this to whatever page you want

to process the form data on. The method attribute specifies how the data should be sent,

either GET or POST. In most cases you will want to use POST because it is more secure

than GET, but there are some situations where using GET may be preferable (for

example if you wanted people to be able bookmarked search results). For more

information about these methods see our HTML Forms Tutorials: Introduction article

which covers them in detail.

467 | Page

The next thing we need do is add a submit button so that visitors can actually send us

their details:

<input type="submit" value="Submit">

You can put this button anywhere inside the form tags. Now if you save your page and

try it out, when you click on the submit button a new window will open with just

yourpage.php in it (assuming that is what you set as the action). This happens because

we haven't told our browser to do anything else yet - at present all submitting the form

does is send us to another page which isn't very useful!

We need JavaScript to check for errors before sending off any data so let's add some

code:

<script type="text/javascript"> function checkForm() { var errorMsg = ""; // Check each

field to make sure it has a value. if (document.form1.name == "") { errorMsg += "- Please

enter your name

"; } else if (document.form1 .email == "" || document .form 1 .email_confirm != document

form 1 email) {errorMsg += "- You must provide an e-mail address and confirm it by

entering the same address again."; } return true; // This line submits the form only when

there are no errors in any of the fields, otherwise we display our message telling them

what they need to do: alert(errormsg); return false ; </script> <body

onload="checkForm();" >

 ... rest of page here...

</body>

468 | Page

JavaScript Cookies

Creating a cookie in JavaScript is very simple. You just have to use the document object

and its method createCookie(). The syntax of this function looks like:

 document.cookie = "name=value; expires=date";

The name parameter represents the name of your cookie, while value stands for its

content (string). If you want to set an expiration date on it, then add another attribute

called expires with a valid Date() string as value or simply pass null if you don't need

one.

 document.cookie="username=John Doe;expires"+Date(30); //creates username

cookies that will expire after 30 days from now

 document.cookie="username=John Doe;expires"+Date(30*24); //creates username

cookies that will expire after 30 days from now

Reading a cookie in JavaScript is very simple as well, you just have to use the document

object and its method getCookie(). The syntax of this function looks like:

 var name = getCookie("name");

The only parameter represents the name of your cookie (string). This function returns

null if no such cookie exists or it has already expired. You can also read all existing

cookies using another built-in property called document.cookies which contains an array

with all available ones on your page separated by semicolons ";" . For example:

 alert(document.cookies) ;//will display something like :

userName1=value1;userName2=value2 etc... /*this code displays nothing because

there are no any active cookiess*/

469 | Page

Updating a cookie in JavaScript is very simple as well. You just have to create it again

with the same name and value, but this time you also need to set an expiration date

that's greater than its current one (if any). For example:

 document.cookie = "name=newValue; expires=" + Date(Date().getTime()+1); /*this

code will update your cookies*/

 document.cookie = "username=John Doe;expires"+Date(30*24); //creates username

cookies that will expire after 30 days from now /*this code creates new cookies if there

are no active ones or updates existing ones */

JavaScript Ajax Requests

Ajax is a web development technique for creating interactive web applications. The goal

of Ajax is to make web pages feel more responsive by exchanging small amounts of

data with the server behind the scenes, so that the entire page does not have to be

reloaded each time the user makes a change.

In order to use Ajax, you will need to use a JavaScript library such as jQuery or

Prototype. These libraries provide an easy way to send and receive data from a server

without having to refresh the page.

Once you have included the Ajax library in your web page, you can start making

requests to the server. For example, if you wanted to load some data from a file on the

server, you would use the following code:

$.ajax({ url: 'data.json', success: function(data) { // do something with the data } });

This code will make an Ajax request to the URL 'data.json'. If the request is successful,

the function in the 'success' callback will be executed with the data from the server as

its argument.

470 | Page

If you want to send data to the server, you can use the '$.ajax()' method's 'data' option:

$.ajax({ url: 'saveData.php', type: 'POST', data: { name: 'John', age: 20 } });

This code will make a POST request to the URL 'saveData.php'. The data that is being

sent to the server is specified in the 'data' option as an object. In this example, we are

sending two pieces of data: 'name' and 'age'.

The following example will show you how to make an Ajax GET request in JavaScript:

$.ajax({ url: 'getData.php', type: 'GET', success: function(data) { // do something with the

data } });

