
The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible

for any use which may be made of the information contained therein. (Project Number: 621417-EPP-1-2020-1-PT-EPPKA3-IPI-SOC-IN)

SQL Trainer Materials

Subchapter 1 – The basics of SQL

WP3: Code4SP Training Materials

Prepared by:

Subchapter 1: The basics of SQL

SQL Introduction

• SQL (Structured Query Language) is a computer language for storing,

manipulating and retrieving data stored in a relational database.

A relational database is a collection of data items with pre-defined relationships

between them.

Some of its many applications are:

• Allowing users to access data in the relational database management systems.
• Allowing users to describe the data.

• Allowing users to define the data in a database and manipulate that data.

Shall we give it a try?

https://www.w3schools.com/html/tryit.asp?filename=tryhtml_intro

https://www.w3schools.com/html/tryit.asp?filename=tryhtml_intro

SQL Syntax

Most of the actions you need to perform on a database are done with SQL statements

An SQL statement is composed of a sequence of keywords, identifiers etc. terminated by a
semicolon (;)

Example:

SELECT emp_name, hire_date, salary FROM employees WHERE salary > 5000;

For better readability, you can also write the same statement, as follows:

SELECT emp_name, hire_date, salary
FROM employees
WHERE salary > 5000;

Case Sensitivity in SQL

SQL keywords are case-insensitive, which means SELECT is the same as select

• Consider another SQL statement that retrieves records from the Employees table:

SELECT emp_name, hire_date, salary FROM employees;

• The same statement can also be written as follows:

select emp_name, hire_date, salary from employees;

* Note that this depends on the operating system, i.e. Unix or Linux platforms are case-sensitive

whereas Windows platforms aren’t.

SQL Select

The SELECT statement selects or retrieves data from one or more tables.

You can use this statement to retrieve all the rows from a table in one go or retrieve only those

rows that satisfy a specific condition or a combination of conditions.

• Select All from Table: returns all the rows from the Employees’ table

SELECT * FROM employees;

• Select Specific Columns from Table: returns all rows from specified columns

SELECT emp_id, emp_name, hire_date, salary

FROM employees;

SQL Select Distinct

In the previous slide, we have seen how to select all values from a table or from specific columns.

Customers table - SELECT DISTINCT example

(Source: https://www.w3schools.com/sql/sql_distinct.asp)

• Write a statement to select all values from the Country column in the Customers table

Can you notice anything? Are the values different or the same?

https://www.w3schools.com/sql/sql_distinct.asp

SQL Select Distinct

SELECT DISTINCT omits duplicated values when used in a query.

Syntax:

SELECT DISTINCT column1, column2, ...

FROM table_name;

Example 1: Select distinct countries from the Customers table

SELECT DISTINCT Country FROM Customers;

Example 2: List the number of different Customer countries

SELECT COUNT(DISTINCT Country) FROM Customers;

*Note that this example will not

work in Firefox since

COUNT(DISTINCT column_name)

is not supported in MS Access

SQL Where

In real-world cases, we generally need to select, update or delete only those records which fulfil

certain conditions, like users who belong to a particular age group, country, etc.

The WHERE clause is used with the SELECT, UPDATE, and DELETE.

The WHERE clause is used with the SELECT statement to extract only those records that fulfil

specified conditions.

Syntax:

SELECT column_list

FROM table_name

WHERE condition;

SQL Where

Example 1: Select all employees from the Employees table whose salary is greater than 7000

SELECT * FROM employees WHERE salary > 7000;

Example 2: Select all employees with department id =1:

SELECT * FROM employees WHERE dept_id=1;

The WHERE clause simply filters out the unwanted data

SQL Where

Table of Operators used in WHERE clause

(Source: https://www.w3schools.com/sql/sql_where.asp)

Practice:

• Select all employees from the employees table whose salary is less than 7000

• Select all employees from the employees table whose dept_id equals 5

https://www.w3schools.com/sql/sql_where.asp

SQL And, Or, Not

The WHERE clause can be combined with AND, OR, and NOT operators.

The AND operator displays a record if all the conditions that use AND are TRUE.

Syntax:

SELECT column1, column2, ...

FROM table_name

WHERE condition1 AND condition2 AND condition3 ...;

Example: Select all fields from Customers table where country is “Germany” AND City is “Berlin”

SELECT * FROM Customers

WHERE Country='Germany' AND City='Berlin';

SQL And, Or, Not

The OR operator displays a record if any of the conditions that use OR are TRUE.

Syntax:

SELECT column1, column2, ...

FROM table_name

WHERE condition1 OR condition2 OR condition3 ...;

Example 1: Select all fields from Customers table where city is “Berlin” or “München”

SELECT * FROM Customers.

WHERE City='Berlin' OR City='München’;

Example 2: Select all fields from Customers table where country is “Germany” or “Spain”.

SELECT * FROM Customers

WHERE Country='Germany' OR Country='Spain';

SQL And, Or, Not

The NOT operator displays a record if the condition(s) is NOT TRUE.

Syntax:

SELECT column1, column2, ...

FROM table_name

WHERE NOT condition;

Example: Select all fields from Customers table where country is NOT “Germany”.

SELECT * FROM Customers

WHERE NOT Country='Germany';

SQL And, Or, Not

Combining AND, OR and NOT

Example 1: Select all rows from the Customers table where country is Germany and city must

be either Berlin or München

SELECT * FROM Customers

WHERE Country='Germany' AND (City='Berlin' OR City='München');

Example 2: Select all rows from the Customers table where country is NOT Germany and NOT

USA

SELECT * FROM Customers

WHERE NOT Country='Germany' AND NOT Country='USA';

SQL Order By

The ORDER BY keyword sorts the result-set in ascending or descending order. The ORDER BY

keyword sorts the records in ascending order by default.

Syntax:

SELECT column1, column2, ...

FROM table_name

ORDER BY column1, column2, ... ASC|DESC;

SQL Order By

For our examples, we will use the Customers table that can be found here

Example 1: Selects all customers from the Customers table and sorts them by the Country

column

SELECT * FROM Customers

ORDER BY Country;

Example 2: Selects all customers from the same table and sorts them in Descending order by

the Country column

SELECT * FROM Customers

ORDER BY Country DESC;

https://www.w3schools.com/sql/sql_orderby.asp

SQL Order By

Example 3: Selects all customers from the same table and sorts them by Country and Customer

Name.

SELECT * FROM Customers

ORDER BY Country, CustomerName;

* Here, the order is initially sorted by Country. However, if there are some rows that have the

same country, then they are sorted by Customer Name.

Example 4: Selects all customers from the same table and sorts them in ascending order by

Country and descending order by Customer Name

SELECT * FROM Customers

ORDER BY Country ASC, CustomerName DESC;

SQL Order By

Example 3: Selects all customers from the same table and sorts them by Country and Customer

Name.

SELECT * FROM Customers

ORDER BY Country, CustomerName;

* Here, the order is initially sorted by Country. However, if there are some rows that have the

same country, then they are sorted by Customer Name.

Example 4: Selects all customers from the same table and sorts them in ascending order by

Country and descending order by Customer Name

SELECT * FROM Customers

ORDER BY Country ASC, CustomerName DESC;

SQL Order By

Practice:

• Select all customers from the Customers table and sort them by the Country column in

ascending order

• Select all customers from the Customers table and sort them in descending order by

Customer Name

• Select all customers from the Customers table and sort them in descending order by City and

ascending order by Customer Name

SQL Insert Into

The INSERT INTO statement inserts new records in a table. For your code to run correctly,

specify both the column names and the values that will be inserted.

Syntax:

INSERT INTO table_name (column1, column2, column3, ...)

VALUES (value1, value2, value3, ...);

Example: Add a new record in your “Customers” table

INSERT INTO Customers (CustomerName, ContactName, Address, City, PostalCode, Country)

VALUES ('Cardinal', 'Tom B. Erichsen', 'Skagen 21', 'Stavanger', '4006', 'Norway');

SQL Null Values

A field with a NULL value is a field with no value. If a field in a table is optional, it is possible to

insert a new record or update a record without adding a value to this field.

* A NULL value is different from a zero value or a field that contains spaces. A field with a

NULL value has been left blank during record creation!

To test for NULL values, you cannot use comparison operators such as =, <>.

You can use either the IS NULL or IS NOT NULL operators.

SQL Null Values

IS NULL Syntax:

SELECT column_names

FROM table_name

WHERE column_name IS NULL;

IS NOT NULL Syntax:

SELECT column_names

FROM table_name

WHERE column_name IS NOT NULL;

SQL Null Values

Example of IS NULL: Selects all customers with Null values in the Address column

SELECT CustomerName, ContactName, Address

FROM Customers

WHERE Address IS NULL;

Example of IS NULL: Selects all customers with NOT Null values in the Address column

SELECT CustomerName, ContactName, Address

FROM Customers

WHERE Address IS NOT NULL;

Practice:

• Look for null values in the PostalCode and City columns

• Look for non-empty values in the ContactName column

SQL Update

The UPDATE statement modifies the existing records of a table.

Syntax:

UPDATE table_name

SET column1 = value1, column2 = value2, ...

WHERE condition;

Example: Updates CustomerID=1 from the “Customers” table in the sample database

UPDATE Customers

SET ContactName = 'Alfred Schmidt', City= 'Frankfurt'

WHERE CustomerID = 1;

* Be careful when updating records
in a table! Notice the WHERE clause
in the UPDATE statement. The
WHERE clause specifies which
record(s) should be updated.
* If you omit the WHERE clause, all
records in the table will be
updated!

SQL Update

The WHERE clause determines how many records will be updated.

Example: Update the ContactName to "Juan" for all records where the country is "Mexico" in the

Customers table

UPDATE Customers

SET ContactName='Juan'

WHERE Country='Mexico';

SQL Delete

The DELETE statement deletes existing records in a table.

Syntax:

DELETE FROM table_name WHERE condition;

Example:

DELETE FROM Customers WHERE CustomerName='Alfreds Futterkiste';

It is possible to delete all rows in a table without deleting the table itself. This means that

the table’s structure, attributes, and indexes will stay intact:

DELETE FROM table_name;

* Keep in mind that you need

to be careful when deleting

records in a table! Notice the

WHERE clause in the DELETE

statement. The WHERE clause

specifies which record(s)

should be deleted.

* If you omit the WHERE

clause, all records in the table

will be deleted!

SQL Delete

The DELETE statement deletes existing records in a table.

Syntax:

DELETE FROM table_name WHERE condition;

Example:

DELETE FROM Customers WHERE CustomerName='Alfreds Futterkiste';

It is possible to delete all rows in a table without deleting the table itself. This means that

the table’s structure, attributes, and indexes will stay intact:

DELETE FROM table_name;

* Keep in mind that you need

to be careful when deleting

records in a table! Notice the

WHERE clause in the DELETE

statement. The WHERE clause

specifies which record(s)

should be deleted.

* If you omit the WHERE

clause, all records in the table

will be deleted!

SQL Select Top

The SELECT TOP clause specifies the number of records that will be returned.

SQL Server/MS Access Syntax:

SELECT TOP number|percent column_name(s)

FROM table_name

WHERE condition;

MySQL Syntax:

SELECT column_name(s)

FROM table_name

WHERE condition

LIMIT number;

* Note that not all database

systems support the SELECT

TOP clause. MySQL supports

the LIMIT clause to select a

limited number of records,

while Oracle uses FETCH

FIRST n ROWS ONLY and

ROWNUM.

SQL Select Top

Oracle 12 Syntax:

SELECT column_name(s)

FROM table_name

ORDER BY column_name(s)

FETCH FIRST number ROWS ONLY;

For Older Oracle Syntax and Older Oracle Syntax with ORDER BY, click here

Example: Select the first three records from the Customers table

SQL Server/MS Access: SELECT TOP 3 * FROM Customers;

MySQL: SELECT * FROM Customers LIMIT 3;

Oracle: SELECT * FROM Customers FETCH FIRST 3 ROWS ONLY;

https://www.w3schools.com/sql/sql_top.asp

SQL Select Top

TOP PERCENT

To select the first 50% of records found in the Customers table:

SQL Server/MS Access: SELECT TOP 50 PERCENT * FROM Customers;

Oracle: SELECT * FROM Customers FETCH FIRST 50 PERCENT ROWS ONLY;

ADD a WHERE Clause

Select the first three records from the Customers table, where the Country is “Germany”:

• SQL Server/MS Access: SELECT TOP 3 * FROM Customers WHERE Country='Germany’;

• MySQL: SELECT * FROM Customers WHERE Country='Germany’ LIMIT 3;

• Oracle: SELECT * FROM Customers WHERE Country='Germany’ FETCH FIRST 3 ROWS

ONLY;

SQL Min and Max

The MIN() function returns the smallest values from selected columns

MIN() Syntax

SELECT MIN(column_name)

FROM table_name

WHERE condition;

The MAX() function returns the largest value from selected columns

MAX() Syntax

SELECT MAX(column_name)

FROM table_name

WHERE condition;

SQL Min and Max

In the following examples, we are using the Products table that can be found here.

Example 1: Finds the price of the cheapest product

SELECT MIN(Price) AS SmallestPrice

FROM Products;

Example 2: Finds the price of the most expensive product

SELECT MAX(Price) AS LargestPrice

FROM Products;

https://www.w3schools.com/sql/sql_min_max.asp

SQL Count, Avg, Sum

The COUNT() function returns the number of rows that match a specified criterion.

COUNT() Syntax:

SELECT COUNT(column_name)

FROM table_name

WHERE condition;

The AVG() function returns the average value of a numeric column.

AVG() Syntax:

SELECT AVG(column_name)

FROM table_name

WHERE condition;

SQL Count, Avg, Sum

The SUM() function returns the total sum of a numeric column.

SUM() Syntax:

SELECT SUM(column_name)

FROM table_name

WHERE condition;

SQL Count, Avg, Sum

For the examples, we are using the same table in the SQL Min and Max, the Products table:

Example of COUNT(): Execute a query to find the number of products

SELECT COUNT(ProductID)

FROM Products;

Example of AVG(): Execute a query to find the average price of all products

SELECT AVG(Price)

FROM Products;

SQL Count, Avg, Sum

In the following example, we will use the OrdersDetails table, which can be found here, to find

the sum of “Quantity”.

Example of SUM():

SELECT SUM(Quantity)

FROM OrderDetails;

Practice:

• Find the average Quantity from the OrdersDetails table

• Find the number of Orders from the OrdersDetails table

https://www.w3schools.com/sql/sql_count_avg_sum.asp

SQL Like

The LIKE operator is used in a

WHERE clause to search for a

specified pattern in a column.

LIKE Syntax:

SELECT column1, column2, ...

FROM table_name

WHERE column LIKE pattern;

LIKE operators with ‘%’ and ‘_’ Wildcards

(Source: https://www.w3schools.com/sql/sql_like.asp)

https://www.w3schools.com/sql/sql_like.asp

SQL Like

Example 1: Selects all customers with a Customer Name that starts with ‘a’:

SELECT * FROM Customers

WHERE CustomerName LIKE 'a%';

Example 2: Selects all Customer names ending with ‘a’:

SELECT * FROM Customers

WHERE CustomerName LIKE '%a';

Example 3: Selects all Customer names that contain ‘or’ in their name in any position:

SELECT * FROM Customers

WHERE CustomerName LIKE '%or%';

SQL Like

Example 4: Select all Customer names that contain ‘r’ in the second position:

SELECT * FROM Customers

WHERE CustomerName LIKE '_r%';

Example 5: Select all Customer names that begin with ‘a’ and have at least three characters in

length

SELECT * FROM Customers

WHERE CustomerName LIKE 'a__%';

Example 6: Select all Customer names that begin with ‘a’ and end with ‘o’:

SELECT * FROM Customers

WHERE CustomerName LIKE 'a%o';

SQL Wildcards

A wildcard character substitutes one or more characters in a string. It is used with the LIKE

operator.

For more on Wildcards used in RDBMS, click here.

Examples with the % Wildcard

In this example, we are selecting all customers with a City starting with “ber”:

SELECT * FROM Customers

WHERE City LIKE 'ber%';

In the following example, we are selecting all customers with a City containing “es”:

SELECT * FROM Customers

WHERE City LIKE '%es%';

https://www.w3schools.com/sql/sql_wildcards.asp

SQL Wildcards

Examples with the _ Wildcard

Here, we are selecting all customers with a City starting with any character followed by “ondon”:

SELECT * FROM Customers

WHERE City LIKE '_ondon';

In this example, we are again selecting all customers with a City starting with ‘L’, followed by any

character, followed by "n", followed by any character, followed by "on":

SELECT * FROM Customers

WHERE City LIKE 'L_n_on';

SQL Wildcards

Examples with the [charlist] Wildcard

Here, we are selecting all customers with a City starting with ‘b’,’ s’, or ‘p’:

SELECT * FROM Customers

WHERE City LIKE '[bsp]%';

In the following example, we are selecting all customers with City starting with ‘a’, ‘b’, or ‘c’:

SELECT * FROM Customers

WHERE City LIKE '[a-c]%';

SQL Wildcards

Examples with the [!charlist] Wildcard

The exclamation mark shows characters that do not contain a specified string. For example, we

want to select all customers with a City that does not start with ‘b’, ‘s’, or ‘p’:

SELECT * FROM Customers

WHERE City LIKE '[!bsp]%';

As an alternative, use the following:

SELECT * FROM Customers

WHERE City NOT LIKE '[bsp]%';

SQL In

The IN operator specifies multiple values in a WHERE clause. It can be considered as satisfying

various conditions.

Syntax 1:

SELECT column_name(s)

FROM table_name

WHERE column_name IN (value1, value2, ...);

Syntax 2:

SELECT column_name(s)

FROM table_name

WHERE column_name IN (SELECT STATEMENT);

SQL In

Suppose that we have a table called “Customers” containing the following columns: CustomerID,

CustomerName, ContactName, Address, City, PostalCode and Country (see the table here).

Example 1: Selects all the customers that are located in Germany, France or UK

SELECT * FROM Customers

WHERE Country IN (‘Germany’, ‘France’, ‘UK’)

Example 2: Selects all the customers that are not located in Germany, France or the UK

SELECT * FROM Customers

WHERE Country NOT IN (‘Germany’, ‘France’, ‘UK’)

https://www.w3schools.com/sql/sql_in.asp

SQL In

Example 3: Select customers that are from the same countries as the suppliers

SELECT * FROM Customers

WHERE Country IN (SELECT Country FROM Suppliers)

Practice:

• Select customers located in the City Berlin

• Select customers located in the City London and Madrid

• Select customers that are not from the same country as the suppliers

SQL Between

The BETWEEN operator provides a range of values to select from. The values can be text,

numbers or dates. The BETWEEN operator includes the starting and end values.

Syntax:

SELECT column_name(s)

FROM table_name

WHERE column_name BETWEEN value1 AND value2;

There will be a series of examples with the following operators: BETWEEN, NOT BETWEEN,

BETWEEN with IN, BETWEEN and NOT BETWEEN with text values and BETWEEN dates.

SQL Between

BETWEEN Example: Selects all products with a price range of 10 to 20

SELECT * FROM Products

WHERE Price BETWEEN 10 AND 20;

NOT BETWEEN Example: Shows all the products outside the range that we set in the previous

example.

SELECT * FROM Products

WHERE Price NOT BETWEEN 10 AND 20;

BETWEEN with IN Example: Selects all products with a price range of 10 to 20 and does not show

products with CategoryID 1, 2, or 3

SELECT * FROM Products

WHERE Price BETWEEN 10 AND 20

AND CategoryID NOT IN (1,2,3);

SQL Between

BETWEEN with text values Example: Selects all products with a ProductName between Carnarvon

Tigers and Mozzarella di Giovanni.

SELECT * FROM Products

WHERE ProductName BETWEEN 'Carnarvon Tigers' AND 'Mozzarella di Giovanni'

ORDER BY ProductName;

NOT BETWEEN with text values Example: Selects all products with a ProductName NOT between

Carnarvon Tigers and Mozzarella di Giovanni.

SELECT * FROM Products

WHERE ProductName NOT BETWEEN 'Carnarvon Tigers' AND 'Mozzarella di Giovanni'

ORDER BY ProductName;

SQL Between

BETWEEN Dates Example: Selects all orders with an OrderDate between '01-July-1996' and '31-

July-1996’ (to find the table used in this example, go here)

There are two ways that this can be done, by either using a hashtag (#) or quote marks (‘’):

SELECT * FROM Orders

WHERE OrderDate BETWEEN #07/01/1996# AND #07/31/1996#;

OR

SELECT * FROM Orders

WHERE OrderDate BETWEEN '1996-07-01' AND '1996-07-31';

https://www.w3schools.com/sql/sql_between.asp

SQL Aliases

Aliases assign a temporary name to a table or a column within a table. An alias exists only for

the duration of a query, and it is often used to make column names more readable. An alias is

created by using the keyword AS.

Syntax for column alias:

SELECT column_name AS alias_name

FROM table_name;

Syntax for table alias:

SELECT column_name(s)

FROM table_name AS alias_name;

SQL Aliases

Column Aliases

Let’s see an example that creates two aliases, one for each column:

SELECT CustomerID AS ID, CustomerName AS Customer

FROM Customers;

Another example creates two aliases again:

SELECT CustomerName AS Customer, ContactName AS [Contact Person]

FROM Customers;

* Note that it is put in square brackets ([]) because the alias contains spaces. Quotation marks can be used

as an alternative to square brackets.

SQL Aliases

You also have the option of creating an alias that contains one or more columns, let’s look at the

example below to see how it works:

SELECT CustomerName, Address + ', ' + PostalCode + ' ' + City + ', ' + Country AS Address

FROM Customers;

The above statement changes a little bit in MySQL:

SELECT CustomerName, CONCAT(Address,', ',PostalCode,', ',City,', ',Country) AS Address

FROM Customers;

SQL Aliases

Table Aliases: The following example selects all the orders from the customer table with

CustomerID=4 (Around the Horn).

Here aliases are used to shorten the query:

SELECT o.OrderID, o.OrderDate, c.CustomerName

FROM Customers AS c, Orders AS o

WHERE c.CustomerName='Around the Horn' AND c.CustomerID=o.CustomerID;

A query without aliases would look something like this:

SELECT Orders.OrderID, Orders.OrderDate, Customers.CustomerName

FROM Customers, Orders

WHERE Customers.CustomerName='Around the Horn' AND

Customers.CustomerID=Orders.CustomerID;

SQL Join

A JOIN clause combines rows from two or more tables based

on a related column found in both tables. There are four

different joins in SQL:

1. (INNER) JOIN: Returns records that have matching values

in both tables;

2. LEFT (OUTER) JOIN: Returns all records from the left table

and the corresponding matched records from the right table;

3. RIGHT (OUTER) JOIN: Returns all records from the right

table and the corresponding matched records from the left table;

4. FULL (OUTER) JOIN: Returns all records when there is a

match in either the left or the right table.

Figure - Different types of JOINS
(Source: https://www.w3schools.com/sql/sql_join.asp)

https://www.w3schools.com/sql/sql_join.asp

SQL Inner Join

The INNER JOIN keyword selects records that have matching values in both

tables.

Syntax:

SELECT column_name(s)

FROM table1

INNER JOIN table2

ON table1.column_name = table2.column_name;

To retrieve the names of customers and their corresponding Order IDs:

SELECT Orders.OrderID, Customers.CustomerName

FROM Orders

INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID;

Inner Join
(Source: https://www.w3schools.com/sql/sql_join.asp)

https://www.w3schools.com/sql/sql_join.asp

SQL Left Join

The LEFT JOIN keyword returns all records from the left table and the

matching records from the right table.

Syntax:

SELECT column_name(s)

FROM table1

LEFT JOIN table2

ON table1.column_name = table2.column_name;

Select all customers and any orders that they might have:

SELECT Customers.CustomerName, Orders.OrderID

FROM Customers

LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID

ORDER BY Customers.CustomerName;

Left Join
(Source: https://www.w3schools.com/sql/sql_join.asp)

https://www.w3schools.com/sql/sql_join.asp

SQL Right Join

The RIGHT JOIN keyword essentially follows the same logic from the right

side instead of the left one as described in the previous subsection.

Syntax:

SELECT column_name(s)

FROM table1

RIGHT JOIN table2

ON table1.column_name = table2.column_name;

Selects all employees and any orders that they might have placed:

SELECT Orders.OrderID, Employees.LastName, Employees.FirstName

FROM Orders

RIGHT JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID

ORDER BY Orders.OrderID;

Right Join
(Source: https://www.w3schools.com/sql/sql_join.asp)

https://www.w3schools.com/sql/sql_join.asp

SQL Full Join

The FULL JOIN keyword returns all records when matching records are

found in either the right or the left table.

Syntax:

SELECT column_name(s)

FROM table1

FULL OUTER JOIN table2

ON table1.column_name = table2.column_name

WHERE condition;

* Note that it returns all matching records from both tables even if no

common matches are found between the two tables. In the case of no

common matches, a null value is assigned.

Full (Outer) Join
(Source: https://www.w3schools.com/sql/sql_join.asp)

https://www.w3schools.com/sql/sql_join.asp

SQL Self Join

A self-join is considered a regular join, but the table is joined within.

Syntax:

SELECT column_name(s)

FROM table1 T1, table1 T2 (T1 and T2 are aliases used for the same table)

WHERE condition;

Example: Selects customers that are from the same city

SELECT A.CustomerName AS CustomerName1, B.CustomerName AS CustomerName2, A.City

FROM Customers A, Customers B

WHERE A.CustomerID <> B.CustomerID

AND A.City = B.City

ORDER BY A.City;

SQL Union

The UNION operator is used to combine the result-set of two or more SELECT statements.

There are a few requirements to enable a UNION:

1. Every SELECT statement within the UNION must have the same number of columns;

2. The columns must have similar data types;

3. The columns in every SELECT statement must be in the same order.

Syntax:

SELECT column_name(s) FROM table1

UNION

SELECT column_name(s) FROM table2;

SQL Union

The UNION operator selects only distinct values by default.

To allow duplicate values, use UNION ALL:

SELECT column_name(s) FROM table1

UNION ALL

SELECT column_name(s) FROM table2;

* Note that the column names in the two SELECT statements are usually equal.

SQL Union

Example 3: Returns the distinct German

cities from both the “Customers” and

“Suppliers” tables with the use of WHERE:

SELECT City, Country FROM Customers

WHERE Country = ‘Germany’

UNION

SELECT City, Country FROM Customers

WHERE Country = ‘Germany’

ORDER BY City;

Example 1: Returns distinct cities

SELECT City FROM Customers

UNION

SELECT City FROM Suppliers

ORDER BY City;

Example 2: Return duplicate values

SELECT City FROM Customers

UNION ALL

SELECT City FROM Suppliers

ORDER BY City;

SQL Group By

Syntax:

SELECT column_name(s)

FROM table_name

WHERE condition

GROUP BY column_name(s)

ORDER BY column_name(s);

The GROUP BY statement groups rows with the

same values into summary rows. As an

example, consider that you want to find the

number of customers in each country.

Also, the GROUP BY statement is often used

with aggregate functions such as COUNT(),

MAX(), MIN(), SUM(), AVG() to group the result

by one or more columns.

SQL Group By

Example 3: Lists the number of orders sent by

each shipper by joining two tables

SELECT Shippers.ShipperName,

COUNT(Orders.OrderID) AS NumberOfOrders

FROM Orders

LEFT JOIN Shippers ON Orders.ShipperID =

Shippers.ShipperID

GROUP BY ShipperName;

Example 1: Lists the number of customers found in

each county

SELECT COUNT(CustomerID), Country

FROM Customers

GROUP BY Country;

Example 2: Lists the number of customers in each

country, but in descending order.

SELECT COUNT(CustomerID), Country

FROM Customers

GROUP BY Country;

ORDER BY COUNT(CustomerID) DESC;

SQL Having

Example: Lists the number of customers found

in each country and countries that have more

than five customers

SELECT COUNT(CustomerID), Country

FROM Customers

GROUP BY Country

HAVING COUNT(CustomerID) > 5;

The HAVING clause was added to SQL because

WHERE cannot be used with aggregate functions.

Syntax:

SELECT column_name(s)

FROM table_name

WHERE condition

GROUP BY column_name(s)

HAVING condition

ORDER BY column_name(s);

SQL Having

Example 1: List the employees “Davolio” or “Fuller”

if they have registered orders more than 25 times:

SELECT Employees.LastName,

COUNT(Orders.OrderID) AS NumberOfOrders

FROM (Orders

INNER JOIN Employees ON Orders.EmployeeID =

Employees.EmployeeID)

WHERE LastName = ‘Davolio’ OR LastName =

‘Fuller’

GROUP BY LastName

HAVING COUNT(Orders.OrderID) > 25;

Example 2: Lists the employees that have registered

more than ten orders by joining information on two

tables

SELECT Employees.LastName,

COUNT(Orders.OrderID) AS NumberOfOrders

FROM (Orders

INNER JOIN Employees ON Orders.EmployeeID =

Employees.EmployeeID)

GROUP BY LastName

HAVING COUNT(Orders.OrderID) > 10;

SQL Select Into

The SELECT INTO statement copies data from one table into a new table.

Syntax to copy all columns into a new table:

SELECT *

INTO newtable [IN externaldb]

FROM oldtable

WHERE condition;

Syntax to copy only some columns into a new table:

SELECT column1, column2, column3, ...

INTO newtable [IN externaldb]

FROM oldtable

WHERE condition;

SQL Select Into

Example of creating a backup copy of Customers:

SELECT * INTO CustomersBackup2017

FROM Customers;

Example of using IN clause to copy the table into a new table in another database:

SELECT * INTO CustomersBackup2017 IN 'Backup.mdb'

FROM Customers;

Example to copy only a few columns into a new table:

SELECT CustomerName, ContactName INTO CustomersBackup2017

FROM Customers;

SQL Select Into

Example to copy only the German customers into a new

table:

SELECT * INTO CustomersGermany

FROM Customers

WHERE Country = 'Germany';

Example to copy data from multiple tables into a new table:

SELECT Customers.CustomerName, Orders.OrderID

INTO CustomersOrderBackup2017

FROM Customers

LEFT JOIN Orders ON Customers.CustomerID =

Orders.CustomerID;

SELECT INTO can also be used to create a

new, empty table using the schema of another.

To do that, add a WHERE clause that returns

no data:

SELECT * INTO newtable

FROM oldtable

WHERE 1 = 0;

SQL Insert Into Select

The INSERT INTO SELECT statement copies data from one table and inserts it into another. It

requires the data types in the source and target table to match.

Syntax to copy all columns from one table to another:

INSERT INTO table2

SELECT * FROM table1

WHERE condition;

Syntax to copy only some columns from one table to

another:

INSERT INTO table2 (column1, column2, column3,

...)

SELECT column1, column2, column3, ...

FROM table1

WHERE condition;

SQL Insert Into Select

Example 1: Copies Suppliers into Customers (note that the

columns that are not filled with data will contain null values)

INSERT INTO Customers (CustomerName, City, Country)

SELECT SupplierName, City, Country FROM Suppliers;

Example 2: Copies Suppliers into Customers to fill all

columns

INSERT INTO Customers (CustomerName, ContactName,

Address, City, PostalCode, Country)

SELECT SupplierName, ContactName, Address, City,

PostalCode, Country FROM Suppliers;

Example 3: Copies only the German suppliers

into Customers:

INSERT INTO Customers (CustomerName,

City, Country)

SELECT SupplierName, City, Country FROM

Suppliers

WHERE Country='Germany';

SQL Case

The CASE statement goes through a series of conditions

and returns a value when the first condition is met. Think

of it as an if, then, else statement.

When one condition is found true, it will stop going through

the loop. If no conditions are found true, it will return the

value in the ELSE clause.

* Note that if there isn’t an ELSE clause and no

conditions are found true, it will return NULL.

Syntax:

CASE

WHEN condition1 THEN result1

WHEN condition2 THEN result2

WHEN conditionN THEN resultN

ELSE result

END;

SQL Case

Example 1: Goes through a series of conditions and

return a value when the first condition is met

SELECT OrderID, Quantity,

CASE

WHEN Quantity > 30 THEN 'The quantity is greater

than 30'

WHEN Quantity = 30 THEN 'The quantity is 30’

ELSE 'The quantity is under 30'

END AS QuantityText

FROM OrderDetails;

Example 2: Orders the customers by City. If

City is NULL, it will be ordered by Country.

SELECT CustomerName, City, Country

FROM Customers

ORDER BY

(CASE

WHEN City IS NULL THEN Country

ELSE City

END);

SQL Null Functions

The NULL functions include the following: IFNULL(), ISNULL(), COALESCE(), and NVL().

Consider that the “UnitsOnOrder” column is optional and may contain NULL values.

Example:

SELECT ProductName, UnitPrice * (UnitsInStock + UnitsOnOrder)

FROM Products;

Here we can see that if any of the UnitsOnOrder values are null, the result will also be null.

SQL Null Functions

In MySQL, you can use the ISNULL() function that lets you return an alternative value if an expression

is null:

SELECT ProductName, UnitPrice * (UnitsInStock + IFNULL(UnitsOnOrder, 0))

FROM Products;

Or we can use the COALESCE() function:

SELECT ProductName, UnitPrice * (UnitsInStock + COALESCE(UnitsOnOrder, 0))

FROM Products;

SQL Null Functions

In SQL Server, the ISNULL() function does the same thing as in MySQL:

SELECT ProductName, UnitPrice * (UnitsInStock + IFNULL(UnitsOnOrder, 0))

FROM Products;

In MS Access IsNull() function returns TRUE(-1) if the expression is a null value, otherwise FALSE (0):

SELECT ProductName, UnitPrice * (UnitsInStock + IIF(IsNull(UnitsOnOrder), 0, UnitsOnOrder))

FROM Products;

In Oracle, the NVL() function does the same thing:

SELECT ProductName, UnitPrice * (UnitsInStock + NVL(UnitsOnOrder, 0))

FROM Products;

SQL Comments

SQL Comments explain SQL statement sections or prevent their execution.

Single line comments in SQL start with - - (two dashes):

--Select all:

SELECT * FROM Customers;

Or it can be used like this to ignore the end of the line:

SELECT * FROM Customers -- WHERE City='Berlin';

Or to ignore a statement:

--SELECT * FROM Customers;

SELECT * FROM Products;

* Note that the examples in this section are not

supported in Firefox and Microsoft Edge, which

are Microsoft Access databases. Comments are

generally not supported in Microsoft Access

databases.

SQL Comments

Multiple-line comments start with /* and end with */. Any text written between these two will be

ignored.

Example 1:

/*Select all the columns

of all the records

in the Customers table:*/

SELECT * FROM Customers;

To ignore part of a statement, you can also use /**/.

Example 2:

SELECT CustomerName, /*City,*/ Country FROM

Customers;

Let’s practice

You have learnt a lot of new things by now, so it is time to

put what we have learnt into practice!

To do this, click here.

https://www.w3schools.com/sql/sql_exercises.asp

NEXT CHAPTER: SQL Database

THANK YOU!

	Slide 1
	Slide 2: Subchapter 1: The basics of SQL
	Slide 3: SQL Introduction
	Slide 4: SQL Syntax
	Slide 5: Case Sensitivity in SQL
	Slide 6: SQL Select
	Slide 7: SQL Select Distinct
	Slide 8: SQL Select Distinct
	Slide 9: SQL Where
	Slide 10: SQL Where
	Slide 11: SQL Where
	Slide 12: SQL And, Or, Not
	Slide 13: SQL And, Or, Not
	Slide 14: SQL And, Or, Not
	Slide 15: SQL And, Or, Not
	Slide 16: SQL Order By
	Slide 17: SQL Order By
	Slide 18: SQL Order By
	Slide 19: SQL Order By
	Slide 20: SQL Order By
	Slide 21: SQL Insert Into
	Slide 22: SQL Null Values
	Slide 23: SQL Null Values
	Slide 24: SQL Null Values
	Slide 25: SQL Update
	Slide 26: SQL Update
	Slide 27: SQL Delete
	Slide 28: SQL Delete
	Slide 29: SQL Select Top
	Slide 30: SQL Select Top
	Slide 31: SQL Select Top
	Slide 32: SQL Min and Max
	Slide 33: SQL Min and Max
	Slide 34: SQL Count, Avg, Sum
	Slide 35: SQL Count, Avg, Sum
	Slide 36: SQL Count, Avg, Sum
	Slide 37: SQL Count, Avg, Sum
	Slide 38: SQL Like
	Slide 39: SQL Like
	Slide 40: SQL Like
	Slide 41: SQL Wildcards
	Slide 42: SQL Wildcards
	Slide 43: SQL Wildcards
	Slide 44: SQL Wildcards
	Slide 45: SQL In
	Slide 46: SQL In
	Slide 47: SQL In
	Slide 48: SQL Between
	Slide 49: SQL Between
	Slide 50: SQL Between
	Slide 51: SQL Between
	Slide 52: SQL Aliases
	Slide 53: SQL Aliases
	Slide 54: SQL Aliases
	Slide 55: SQL Aliases
	Slide 56: SQL Join
	Slide 57: SQL Inner Join
	Slide 58: SQL Left Join
	Slide 59: SQL Right Join
	Slide 60: SQL Full Join
	Slide 61: SQL Self Join
	Slide 62: SQL Union
	Slide 63: SQL Union
	Slide 64: SQL Union
	Slide 65: SQL Group By
	Slide 66: SQL Group By
	Slide 67: SQL Having
	Slide 68: SQL Having
	Slide 69: SQL Select Into
	Slide 70: SQL Select Into
	Slide 71: SQL Select Into
	Slide 72: SQL Insert Into Select
	Slide 73: SQL Insert Into Select
	Slide 74: SQL Case
	Slide 75: SQL Case
	Slide 76: SQL Null Functions
	Slide 77: SQL Null Functions
	Slide 78: SQL Null Functions
	Slide 79: SQL Comments
	Slide 80: SQL Comments
	Slide 81: Let’s practice
	Slide 82: NEXT CHAPTER: SQL Database

