
The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible

for any use which may be made of the information contained therein. (Project Number: 621417-EPP-1-2020-1-PT-EPPKA3-IPI-SOC-IN)

JavaScript Trainer Materials

Subchapter 2 – JavaScript & DOM

WP3: Code4SP Training Materials

Prepared by:

Subchapter 2: JavaScript & DOM

What is the Document Object Model (DOM)?

DOM is created by the browser when a web page is loaded in

HTML or XML documents. It is used to define the logical

structure of these documents and to access and alter their

elements.

In this subchapter, we will focus on the HTML DOM which can be

used to access and manipulate HTML documents via JavaScript.

The DOM is constructed as a hierarchical tree of objects that

include all parts of an HTML document such as elements,

attributes, text, etc. Figure 1 – HTML DOM Tree of Objects

(Source: https://www.w3schools.com/js/js_htmldom.asp)

https://www.w3schools.com/js/js_htmldom.asp

What can JavaScript do in the HTML DOM?

It can do the following:

• change all the HTML elements in the page

• change all the HTML attributes in the page

• change all the CSS styles in the page

• remove existing HTML elements and attributes

• add new HTML elements and attributes

• react to all existing HTML events in the page

• create new HTML events in the page

Selecting DOM Elements in JavaScript

JavaScript is used to get or modify the content or value of the HTML elements of the web

page and apply some special effects such as animations or hide.

To be able to perform any action, you need to find or select the target HTML element.

We will go through some of the most common ways of selecting elements on a page and

manipulating them with JavaScript.

Selecting the Topmost Elements

The topmost elements can be accessed directly as document properties.

For instance, to access the <html> element, use the document.documentElement property.

For the <head> element, you can use the document.head property and for the <body>

element, the document.body property.

Selecting the Topmost Elements

* It is important to note that the document.body

should not be used before the <body> element

since it will return null. The program needs to go

through the <body> element first to access the

document.body property.

Topmost Elements Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php

Selecting the Topmost Elements

This example demonstrates what we saw in the

beginning about the hierarchical relationships that

exist between nodes. You need to be mindful that

in order to access the document.body property,

you will have to start from the <body> element to

avoid null values.

Topmost Elements Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php

Selecting Elements by ID

If you want to find or select an HTML element,

the easiest way is to select it is based on its

unique ID. You can do this with the

getElementById() method.

The getElementById() method is used to return

the element as an object if a matching element

is found. Otherwise, it will return null.

* Keep in mind that any HTML element can

have an id attribute, which must be a unique

value within a page. This essentially means

that no two elements can have the same id.

Selecting Elements by ID Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php

Selecting Elements by Class Name

If you want to select all the elements

with specific class names, use the

getElementsByClassName() method.

It will return an array-like object of all

child elements which have all the

given class names.

Selecting Elements by ID Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php

Selecting Elements by Tag Name

If you want to select elements by their tag

name, use the getElementsByTagName()

method. This method will also return an

array-like object of all child elements

which have the given tag name.

Selecting Elements by Tag Name Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php

Selecting Elements with CSS Selectors

CSS Selectors offer a very powerful and

efficient way to select HTML elements in a

document.

To select elements that match the

specified CSS Selector, you can use the

querySelectorAll() method.

This method will return a list of all the

elements that match the specified

selectors.

Selecting Elements with CSS Selectors Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php

Styling DOM Elements in JavaScript

You can also change the visual presentation of HTML documents in a dynamic way by using JavaScript

to apply different styles to HTML elements. Almost all element styles can be set such as fonts, colours,

margins, borders, background images, text alignment, width and height, position, and so on.

Here, we will go through various methods that can be used to set styles in JavaScript.

Setting Inline Styles on Elements

The style attribute is used to apply inline

styles directly to the specific HTML element.

The style property is used in JavaScript to get

or set the inline style of an element.

In the following example, colour and font

properties will be set for an element with

id="intro":

Inline Styles on Elements Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php

Naming Conventions of CSS Properties in JavaScript

It is important to mention that many of CSS properties contain hyphens (-) in their names such as

font-size, background-image, text-decoration, etc. However, in JavaScript, the hyphen is a reserved

operator that signifies a minus sign. Therefore, it is not possible to write an expression in this way:

elem.style.font-size.

To overcome this issue, CSS property names in JavaScript that contain one or more hyphens are

converted to intercapatisalised style words. This essentially means that the hyphens are removed

and the first letter after the hyphen is capitalised. For instance, the CSS property font-size become

fontSize in DOM property.

Getting Style Information from Elements

The style property is also used to get the styles applied to HTML elements.

Style property - Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php)

The style property isn’t the most useful

when it comes to getting style

information from the elements since it

only returns the style rules that are set

in the element’s style attribute and not

those that come from elsewhere such

as style rules in the embedded style

sheets, or external style sheets.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php

Getting Style Information from Elements

If you want to get the values of all CSS

properties that are used to render an element

you can use the window.getComputedStyle()

method, as shown in the following example:

window.getComputedStyle() - Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php)

* Keep in mind that the value 700 for the CSS

property font-weight is the same as the

keyword bold. The colour keyword red is the

same as rgb(255,0,0), which is the rgb

notation of a colour.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php

Adding CSS Classes to Elements

Another way to get or set CSS classes to

HTML elements is by using the

className property. Class is a reserved

word in JavaScript; thus, JavaScript uses

the className property to refer to the

value of the HTML class attribute.

Adding Classes to Elements Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php

Adding CSS Classes to Elements

An even better way to work with CSS

classes is by using the classList property

to get, set or remove CSS classes easily

from an element. This property is

supported in all major browsers except

Internet Explorer before version 10.

classList property - Adding Classes to Elements Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php

Working with Attributes

Attributes are special words used inside the start tag of an HTML element to control the tag’s

behaviour or provide more information about the tag.

In this section, we will go through several methods of adding, removing or changing an HTML

element’s attribute.

Getting Element's Attribute Value

To get the current value of an element’s attribute, you can use the getAttribute() method. If that

particular attribute is not found on the element, it will return null.

getAttribute() method – Getting Element’s Attribute Value Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php

Setting Attributes on Elements

If you want to set an attribute on a specified element, you can use the setAttribute() method. If the

attribute already exists on the element, the value will be updated. If not, a new attribute will be

added with specified name and value.

setAttribute() method – Setting Attributes on Elements Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php

Setting Attributes on Elements

If you want to update or change the value of an existing attribute on an element, you can also use

the setAttribute() method.

Let’s see an example that will update the value of the existing href attribute of an anchor (<a>)

element:

setAttribute() method – Setting Attributes on Elements Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php

Removing Attributes from Elements

To remove an attribute from a specific element, you can use the removeAttribute() method.

Remember the href attribute that we changed from the anchor element; we are now going to

remove it in the following example:

removeAttribute() method – Removing Attributes from Elements Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php

Manipulating DOM Elements in JavaScript

So far, we have learnt how to select and style HTML DOM elements.

Now, we will learn how to add or remove DOM elements in a dynamic way, how to get their

contents and many more.

Adding New Elements to DOM

The document.createElement() method is

used to create a new element in an HTML

document. It creates a new element;

however, it does not add it to the DOM.

A separate step is needed to add it to the

DOM. In the example we just saw, the

appendChild() is used to add the new

element at the end of any other children

under the specified parent node.

Adding New Elements Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php

Adding New Elements to DOM

You also have the option to add the new

element before any other children, as

shown in the example here.

Adding New Elements Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php

Getting or Setting HTML Contents to DOM

If you want to get or set the contents of HTML

elements, you can use the innerHTML property.

This property is used to set or get the HTML

markup inside the element, which contains

content between its opening and closing tags.

As you can from the example, new elements

are inserted quite easily into the DOM with the

innerHTML property. But this property replaces

all the existing content of an element.

Getting or Setting HTML Contents to DOM Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php

Getting or Setting HTML Contents to DOM

If you do not want to replace the existing

contents of an element, you can use the

insertAdjacentHTML() method.

This method takes two parameters: the HTML

to be inserted and its position.

The position must be one of the following:

"beforebegin", "afterbegin", "beforeend", and

"afterend". It is also significant to note that this

method is supported in all major browsers.

Getting or Setting HTML Contents to DOM Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php

Removing Existing Elements from DOM

To remove a child node from the DOM, you can use the removeChild() method. This method

will also return the removed node.

Removing Existing Elements from DOM Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php

Removing Existing Elements from DOM

You can also remove the child element without knowing the parent element. You can find the

child element and use the parentNode property to find its parent. It will return the parent of the

given node in the DOM tree.

Removing Existing Elements from DOM Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php

Replacing Existing Elements in DOM

You also have the option of replacing an

element in HTML DOM with another by using

the replaceChild() method.

This method takes on two parameters: the node

to be inserted and the node to be replaced.

The syntax is used is as follows:

parentNode.replaceChild(newChild, oldChild);

Replacing Existing Elements in DOM Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php

Navigating Between DOM Nodes

By now, you should have a better idea of how to select individual elements on a web page. There

are many occasions where you would need to access child, parent or ancestor element. We have

talked about nodes in the beginning of this subchapter and now we will see how we can access the

different types of nodes.

DOM nodes have several properties and methods that let you navigate or traverse through the tree

DOM structure and make necessary changes quite easily.

Accessing the Child Nodes

The firstChild and lastChild properties allow you to access the first and last direct child node of a

node respectively. If a node does not have any child element, it will return null.

Accessing Child Nodes Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php)

* Please note that the nodeName is a read-only

property, which returns the name of the current node

as a string. For example, it will return the tag name

of an element node, #text for text node, #comment

for comment node, #document for document node,

and so on.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

Accessing the Child Nodes

Accessing Child Nodes Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php)

In the example that we just saw, the nodeName of

the first child node of the main DIV elements

returned #text instead of H1.

This happens because white space, i.e., spaces,

tabs, newlines, and so on, are considered valid

characters and they become part of the DOM

tree in the form of #text nodes.

Then, the <div> tag that contains a newline before

the <h1> will create #text node.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

Accessing the Child Nodes

Accessing Child Nodes Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php)

In order to prevent this issue with the firstChild and

lastChild returning #text or #comment nodes, you

can use the firstElementChild and lastElementChild

properties as an alternative.

These properties will return only the first and last

element of the node respectively. However, this will

not work in Internet Explores prior to Version 9.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

Accessing the Child Nodes

Accessing Child Nodes Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php)

To access all child nodes of a given element, you

can also use the childNodes property.

Keep in mind that the first child node is assigned

index 0.

Here, the childNodes returns all child nodes,

including non-element nodes like text and comment

nodes.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

Accessing the Child Nodes

Accessing Child Nodes Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php)

If you want to get a collection of only elements, you

should use the children property instead.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

Accessing the Parent Nodes

Accessing Parent Nodes Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php)

To access the parent node of a specific node in the DOM tree, you can use the parentNode property.

* Note that the parentNode property will always return null values for document nodes because they do

not have parents.

It is good to know that the topmost DOM

tree nodes can be accessed directly as

document properties, such as the <html>

element, which can be accessed with

document.documentElement property.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

Accessing the Parent Nodes

Accessing Parent Nodes Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php)

There is also an option to get only element nodes with the parentElement, as shown in the example

below:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

Accessing the Sibling Nodes

Accessing Sibling Nodes Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php)

To access the previous and next node in the DOM tree, you can use the previousSibling and

nextSibling properties respectively.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

Accessing the Sibling Nodes

Accessing Sibling Nodes Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php)

To skip any whitespace text nodes, you can use the previousElementSibling and nextElementSibling as

alternatives to get the previous and next sibling elements. If no such sibling is found, these properties

will return null values.

The textContent property used here

signifies the text content of a node and

all of its descendants.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

Types of DOM Nodes

Table of Most Common Types of DOM Nodes

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php)

The DOM tree is comprised of different types of nodes that includes elements, text, comments and many

more.

Every node has a nodeType property that can help you understand how you can access and manipulate

said node.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

Let’s practice

You have learnt a lot of new things by now, so it is time to put what we have learnt

into practice!

To do this, follow either link:

• https://www.w3resource.com/javascript-exercises/javascript-dom-exercises.php

• https://www.tutorialrepublic.com/javascript-examples.php

https://www.w3resource.com/javascript-exercises/javascript-dom-exercises.php
https://www.tutorialrepublic.com/javascript-examples.php

NEXT CHAPTER: JavaScript & BOM

THANK YOU!

	Slide 1
	Slide 2: Subchapter 2: JavaScript & DOM
	Slide 3: What is the Document Object Model (DOM)?
	Slide 4: What can JavaScript do in the HTML DOM?
	Slide 5: Selecting DOM Elements in JavaScript
	Slide 6: Selecting the Topmost Elements
	Slide 7: Selecting the Topmost Elements
	Slide 8: Selecting the Topmost Elements
	Slide 9: Selecting Elements by ID
	Slide 10: Selecting Elements by Class Name
	Slide 11: Selecting Elements by Tag Name
	Slide 12: Selecting Elements with CSS Selectors
	Slide 13: Styling DOM Elements in JavaScript
	Slide 14: Setting Inline Styles on Elements
	Slide 15: Naming Conventions of CSS Properties in JavaScript
	Slide 16: Getting Style Information from Elements
	Slide 17: Getting Style Information from Elements
	Slide 18: Adding CSS Classes to Elements
	Slide 19: Adding CSS Classes to Elements
	Slide 20: Working with Attributes
	Slide 21: Getting Element's Attribute Value
	Slide 22: Setting Attributes on Elements
	Slide 23: Setting Attributes on Elements
	Slide 24: Removing Attributes from Elements
	Slide 25: Manipulating DOM Elements in JavaScript
	Slide 26: Adding New Elements to DOM
	Slide 27: Adding New Elements to DOM
	Slide 28: Getting or Setting HTML Contents to DOM
	Slide 29: Getting or Setting HTML Contents to DOM
	Slide 30: Removing Existing Elements from DOM
	Slide 31: Removing Existing Elements from DOM
	Slide 32: Replacing Existing Elements in DOM
	Slide 33: Navigating Between DOM Nodes
	Slide 34: Accessing the Child Nodes
	Slide 35: Accessing the Child Nodes
	Slide 36: Accessing the Child Nodes
	Slide 37: Accessing the Child Nodes
	Slide 38: Accessing the Child Nodes
	Slide 39: Accessing the Parent Nodes
	Slide 40: Accessing the Parent Nodes
	Slide 41: Accessing the Sibling Nodes
	Slide 42: Accessing the Sibling Nodes
	Slide 43: Types of DOM Nodes
	Slide 44: Let’s practice
	Slide 45: NEXT CHAPTER: JavaScript & BOM

