

1 | P a g e

3.1.:

Code4SP Training

Material Package

WP3:

Code4SP Training Materials –

SQL

Prepared by:

2 | P a g e

Project Information

Project Acronym: Code4SP

Project Title: Coding for Social Promotion

Project Reference: 621417-EPP-1-2020-1-PT-EPPKA3-IPI-SOC-IN

Project website: www.code4sp.eu

Authoring Partner: C.I.P. Citizens in Power

Document Version: 2

Date of Preparation: 11/03/2022

Document History

Date Version Author Description

11/03/2022 1 CIP Draft

22/03/2022 2 CEPROF Revision

http://www.code4sp.eu/

3 | P a g e

Table of Contents

Topic Information .. 4

SQL Basics ... 6

SQL Database .. 59

SQL References ... 90

SQL Examples .. 98

4 | P a g e

Topic Information

Topic:

4. SQL

Prerequisites:

Basic computer literacy, basic software installed, and basic knowledge of working with

files.

Workload:

10 hours

Description:

In this topic, we cover the basics of SQL to get learners acquainted with the

programming world and encourage them to gain more expertise on SQL. We explain

the attributes, syntax, and other relevant terms that learners may have heard or be

familiar with and how these fit into the programming language. We provide a detailed

account of the logic and syntax used in SQL, its structure and other basic and essential

functions.

Learning outcomes:

• Recognise the concept and usage of Structured Query Language (SQL) in

Relational Database Management Systems (RDBMS)

• Formulate basic syntax of SQL queries

• Use SQL to access, manage, and manipulate RDBMS

Material required:

• Computer or laptop

• Internet connection

5 | P a g e

• Online SQL compiler (https://www.mycompiler.io/new/sql)

• Online text editor (https://www.w3schools.com/sql/default.asp)

Lesson Scenario:

The total time dedicated to this topic is 10 hours, and it is up to the judgement of the

trainer/coach to decide how much time will be spent on each subtopic. We suggest

using the PPT training presentations explicitly created for this topic to ease the

teaching process and increase time efficiency. These presentations encompass the

following:

• Progressive development of subtopics and core concepts to retain, and

• Recommended Exercises.

Depending on the trainer’s/coach’s preferences, the progressive development of the

presentations allows the completion of the SQL session within the stipulated time, i.e.,

10 hours. The presentations can also be made available to learners for self-studying.

Subtopics:

• SQL Basics

• SQL Databases

• SQL References

• SQL Examples

Additional resources:

• W3Schools - Guide for every SQL keyword and function, and examples for

each of them

• Tutorialspoint – Another detailed guide on SQL keywords and functions, and

various examples for each them

https://www.mycompiler.io/new/sql
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/
https://www.tutorialspoint.com/sql/index.htm

6 | P a g e

SQL Basics

What is SQL?

SQL stands for Structured Query Language. SQL is a standard programming

language specifically designed for storing, retrieving, managing or manipulating data

found within a Relational Database Management System (RDBMS). A relational

database is a collection of data items with pre-defined relationships between them.

These items are organised as a set of tables with columns and rows.

SQL became an ISO standard in 1987.

SQL is the most widely-implemented database language supported by popular

relational database systems, like MySQL, SQL Server, and Oracle. SQL was initially

developed at IBM in the early 1970s. Originally, it was called SEQUEL (Structured

English Query Language) and it was later changed to SQL (pronounced as S-Q-L).

Applications of SQL

SQL is one of the most widely used query languages for databases. Some of its many

applications are:

● Allowing users to access data in the relational database management systems,

● Allowing users to describe the data,

● Allowing users to define the data in a database and manipulate that data.

SQL Syntax

SQL statements are straightforward, like plain English, but with a specific syntax.

An SQL statement is composed of a sequence of keywords, identifiers etc., terminated

by a semicolon (;).

Example:

7 | P a g e

SELECT emp_name, hire_date, salary FROM employees WHERE salary > 5000;

For better readability, you can also write the same statement, as follows:

SELECT emp_name, hire_date, salary

FROM employees

WHERE salary > 5000;

Use semicolon at the end of an SQL statement — it terminates the statement or

submits the information to the database server.

Case Sensitivity in SQL

Consider another SQL statement that retrieves records from the Employees table:

SELECT emp_name, hire_date, salary FROM employees;

The same statement can also be written as follows:

select emp_name, hire_date, salary from employees;

SQL keywords are case-insensitive, which means SELECT is the same as select.

However, the database and table names may be case-sensitive depending on the

operating system. In general, Unix or Linux platforms are case-sensitive, whereas

Windows platforms aren't.

SQL Select

The SELECT statement selects or retrieves data from one or more tables. You can

use this statement to retrieve all the rows from a table in one go or retrieve only those

rows that satisfy a specific condition or a combination of conditions.

Suppose we have a table named Employees in our database that contains the

following records:

8 | P a g e

| emp_id| emp_name| hire_date| salary| dept_id|

+--------+--------------+------------+--------+---------+

| 1 | Ethan Hunt | 2001-05-01 | 5000 | 4 |

| 2 | Tony Montana | 2002-07-15 | 6500 | 1 |

| 3 | Sarah Connor | 2005-10-18 | 8000 | 5 |

| 4 | Rick Deckard | 2007-01-03 | 7200 | 3 |

| 5 | Martin Blank | 2008-06-24 | 5600 | NULL |

+--------+--------------+------------+--------+---------+

Select All from Table

The following statement will return all the rows from the employees’ table.

>> SELECT * FROM employees;

Select Specific Columns from Table

If you don't require all the data, you can select specific columns, like this:

SELECT emp_id, emp_name, hire_date, salary

FROM employees;

9 | P a g e

After executing the above statement, you will get an output like this:

| emp_id| emp_name| hire_date| salary|

+--------+--------------+------------+--------+

| 1 | Ethan Hunt | 1995-10-30 | 5000 |

| 2 | Tony Montana | 1990-07-15 | 6500 |

| 3 | Sarah Connor | 2011-04-13 | 5600 |

| 4 | Rick Deckard | 2005-10-18 | 7200 |

| 5 | Martin Blank | 1996-05-24 | 8000 |

+--------+--------------+------------+--------+

SQL Select Distinct

The SELECT DISTINCT statement omits duplicated values when used in a query.

You can find duplicated values inside a table, but sometimes you want to see the

“unique” values.

Syntax:

SELECT DISTINCT column1, column2, ...

FROM table_name;

In the following examples, we will be using the Customers table that contains data

about our customers.

Commented [1]: mipos ennoei auto pou egrapsa pio
pano to na epilegoum sigkekrimena columns?

Commented [2]: I diafora tou distinct apo o sketo
select in oti to distinct den sou dinei ta duplicated
stoixeia.

Commented [3]: aaaaa thank you!

10 | P a g e

Table 1 - Customers table in SELECT DISTINCT example (Source:

https://www.w3schools.com/sql/sql_distinct.asp)

To select all values from the Country column in the Customers table, you would use

the following statement:

SELECT Country FROM Customers;

However, this statement will include duplicate values.

If you want to omit the duplicate values from your query, use SELECT DISTINCT:

SELECT DISTINCT Country FROM Customers;

Suppose you wanted to list the number of different customer countries; you would use

the following statement:

SELECT COUNT(DISTINCT Country) FROM Customers;

Please note that this example will not work in Firefox since COUNT(DISTINCT

column_name) is not supported in MS Access.

To get the equivalent result in Access, use this:

>> SELECT Count(*) AS DistinctCountries

 FROM (SELECT DISTINCT Country FROM Customers);

SQL Where

Previously, we have learnt how to fetch all the records from a table or columns from a

table.

https://www.w3schools.com/sql/sql_distinct.asp

11 | P a g e

However, in real-world cases, we generally need to select, update or delete only those

records which fulfil certain conditions, like users who belong to a particular age group,

country, etc.

The WHERE clause is used with the SELECT, UPDATE, and DELETE.

The WHERE clause is used with the SELECT statement to extract only those records

that fulfil specified conditions.

The basic syntax is as follows:

SELECT column_list

FROM table_name

WHERE condition;

Now, let's check out some examples that demonstrate how it works.

Suppose we have a table called Employees in our database with the following records:

| emp_id| emp_name| hire_date| salary| dept_id|

+--------+--------------+------------+--------+---------+

| 1 | Ethan Hunt | 2001-05-01 | 5000 | 4 |

| 2 | Tony Montana | 2002-07-15 | 6500 | 1 |

| 3 | Sarah Connor | 2005-10-18 | 8000 | 5 |

| 4 | Rick Deckard | 2007-01-03 | 7200 | 3 |

+--------+--------------+------------+--------+---------+

The following SQL statement will return all employees from the Employees’ table

whose salary is greater than 7000:

SELECT * FROM employees WHERE salary > 7000;

The WHERE clause simply filters out the unwanted data.

https://www.tutorialrepublic.com/sql-tutorial/sql-select-statement.php
https://www.tutorialrepublic.com/sql-tutorial/sql-update-statement.php
https://www.tutorialrepublic.com/sql-tutorial/sql-delete-statement.php

12 | P a g e

Another example would be to select all employees with department id =1:

SELECT * FROM employees WHERE dept_id=1;

The following table provides the list of operators that can be used with the WHERE

clause:

Table 2 -Table of Operators used in WHERE clause (Source: https://www.w3schools.com/sql/sql_where.asp)

SQL And, Or, Not

The WHERE clause can be combined with AND, OR, and NOT operators.

The AND and OR operators are used to filter records based on more than one

condition.

The AND operator displays a record if all the conditions that use AND are TRUE.

AND Syntax:

SELECT column1, column2, ...

FROM table_name

WHERE condition1 AND condition2 AND condition3 ...;

Example: Select all fields from Customers table where country is “Germany” AND City

is “Berlin”.

https://www.w3schools.com/sql/sql_where.asp

13 | P a g e

SELECT * FROM Customers

WHERE Country='Germany' AND City='Berlin';

The OR operator displays a record if any of the conditions that use OR are TRUE.

OR Syntax:

SELECT column1, column2, ...

FROM table_name

WHERE condition1 OR condition2 OR condition3 ...;

Example 1: Select all fields from Customers table where city is “Berlin” or “München”

SELECT * FROM Customers.

WHERE City='Berlin' OR City='München';

Example 2: Select all fields from Customers table where country is “Germany” or

“Spain”.

SELECT * FROM Customers

WHERE Country='Germany' OR Country='Spain';

The NOT operator displays a record if the condition(s) is NOT TRUE.

NOT Syntax:

SELECT column1, column2, ...

FROM table_name

WHERE NOT condition;

Example: Select all fields from Customers table where country is NOT “Germany”.

SELECT * FROM Customers

WHERE NOT Country='Germany';

14 | P a g e

Combining AND, OR and NOT

Example 1: Select all rows from the Customers table where country is Germany and

city must be either Berlin or München.

SELECT * FROM Customers

WHERE Country='Germany' AND (City='Berlin' OR City='München');

Example 2: Select all rows from the Customers table where country is NOT Germany

and NOT USA.

SELECT * FROM Customers

WHERE NOT Country='Germany' AND NOT Country='USA';

SQL Order By

The ORDER BY keyword sorts the result-set in ascending or descending order.The

ORDER BY keyword sorts the records in ascending order by default. To sort the

records in descending order, use the DESC keyword.

ORDER BY Syntax:

SELECT column1, column2, ...

FROM table_name

ORDER BY column1, column2, ... ASC|DESC;

In the following examples, we will use the Customers table shown below:

Table 3 - Customers Table in ORDER BY example (Source: https://www.w3schools.com/sql/sql_orderby.asp)

https://www.w3schools.com/sql/sql_orderby.asp

15 | P a g e

Example 1: Selects all customers from the Customers table and sorts them by the

Country column

SELECT * FROM Customers

ORDER BY Country;

Example 2: Selects all customers from the same table and sorts them in descending

order by the Country column

SELECT * FROM Customers

ORDER BY Country DESC;

Example 3: Selects all customers from the same table and sorts them by Country and

Customer Name.

SELECT * FROM Customers

ORDER BY Country, CustomerName;

Here, the order is initially sorted by Country. However, if there are some rows that

have the same country, then they are sorted by Customer Name.

Example 4: Selects all customers from the same table and sorts them in ascending

order by Country and descending order by Customer Name

SELECT * FROM Customers

ORDER BY Country ASC, CustomerName DESC;

SQL Insert Into

The INSERT INTO statement inserts new records in a table.

For your code to run correctly, specify both the column names and the values that will

be inserted.

Syntax:

INSERT INTO table_name (column1, column2, column3, ...)

16 | P a g e

VALUES (value1, value2, value3, ...);

Table 5 - INSERT INTO Example (Source:: https://www.w3schools.com/sql/sql_insert.asp)

For example, to add a new record in your “Customers” table, use the following:

INSERT INTO Customers (CustomerName, ContactName, Address, City,

PostalCode, Country)

VALUES ('Cardinal', 'Tom B. Erichsen', 'Skagen 21', 'Stavanger', '4006', 'Norway');

SQL Null Values

A field with a NULL value is a field with no value. If a field in a table is optional, it is

possible to insert a new record or update a record without adding a value to this field.

Then, the field will be saved with a NULL value.

Note: A NULL value is different from a zero value or a field that contains spaces. A

field with a NULL value has been left blank during record creation!

Testing for NULL Values

It is impossible to test for NULL values with comparison operators, such as =, <, or <>.

Instead, we will have to use the IS NULL and IS NOT NULL operators.

IS NULL Syntax:

SELECT column_names

FROM table_name

17 | P a g e

WHERE column_name IS NULL;

IS NOT NULL Syntax:

SELECT column_names

FROM table_name

WHERE column_name IS NOT NULL;

The following examples use the table below:

Table 6 - Customers Table in NULL Values Example (Source:

https://www.w3schools.com/sql/sql_null_values.asp)

Example of IS NULL

Selects all customers with Null values (i.e. empty values) in the Address column:

SELECT CustomerName, ContactName, Address

FROM Customers

WHERE Address IS NULL;

To look for Null values, always use IS NULL.

Example of IS NULL

Selects all customers with NOT Null values (i.e. non-empty values) in the Address

column:

SELECT CustomerName, ContactName, Address

FROM Customers

WHERE Address IS NOT NULL;

18 | P a g e

SQL Update

The UPDATE statement modifies the existing records of a table.

UPDATE table_name

SET column1 = value1, column2 = value2, ...

WHERE condition;

Be careful when updating records in a table! Notice the WHERE clause in the UPDATE

statement. The WHERE clause specifies which record(s) should be updated.

If you omit the WHERE clause, all records in the table will be updated!

Example

Table 7 - Customers table in UPDATE example (Source: https://www.w3schools.com/sql/sql_update.asp)

To update CustomerID=1 from the “Customers” table in the sample database, use the

following:

UPDATE Customers

SET ContactName = 'Alfred Schmidt', City= 'Frankfurt'

WHERE CustomerID = 1;

19 | P a g e

And the “Customers” table will now look like this:

Table 8 - Customers table in UPDATE example (Source: https://www.w3schools.com/sql/sql_update.asp)

The WHERE clause determines how many records will be updated.

The following SQL statement will update the ContactName to "Juan" for all records

where the country is "Mexico" in the Customers table:

UPDATE Customers

SET ContactName='Juan'

WHERE Country='Mexico';

SQL Delete

The DELETE statement deletes existing records in a table.

DELETE FROM table_name WHERE condition;

Keep in mind that you need to be careful when deleting records in a table! Notice the

WHERE clause in the DELETE statement. The WHERE clause specifies which

record(s) should be deleted.

20 | P a g e

If you omit the WHERE clause, all records in the table will be deleted!

Example:

DELETE FROM Customers WHERE CustomerName='Alfreds Futterkiste';

Delete All Records

It is possible to delete all rows in a table without deleting the table itself. This means

that the table’s structure, attributes, and indexes will stay intact:

DELETE FROM table_name;

SQL Select Top

The SELECT TOP clause is used to specify the number of records that will be

returned.

The SELECT TOP clause is useful on large tables with thousands of records.

However, returning a large number of records can impact performance.

Note that not all database systems support the SELECT TOP clause. MySQL supports

the LIMIT clause to select a limited number of records, while Oracle uses FETCH

FIRST n ROWS ONLY and ROWNUM.

SQL Server/MS Access Syntax:

SELECT TOP number|percent column_name(s)

FROM table_name

WHERE condition;

MySQL Syntax:

SELECT column_name(s)

FROM table_name

WHERE condition

21 | P a g e

LIMIT number;

Oracle 12 Syntax:

SELECT column_name(s)

FROM table_name

ORDER BY column_name(s)

FETCH FIRST number ROWS ONLY;

Older Oracle Syntax:

SELECT column_name(s)

FROM table_name

WHERE ROWNUM <= number;

Older Oracle Syntax with ORDER BY:

SELECT *

FROM (SELECT column_name(s) FROM table_name ORDER BY column_name(s))

WHERE ROWNUM <= number;

We will use the “Customers” table shown below in the following examples.

Table 9 - Customers table in SELECT TOP examples (Source: https://www.w3schools.com/sql/sql_top.asp)

https://www.w3schools.com/sql/sql_top.asp

22 | P a g e

Examples of TOP, LIMIT and FETCH FIRST

To select the first three records from the Customers table in SQL Server/MS Access,

use the following:

SELECT TOP 3 * FROM Customers;

To execute a query with the same result as above in MySQL, use the following

statement:

SELECT * FROM Customers

LIMIT 3;

To execute a query with the same result as the two above in Oracle:

SELECT * FROM Customers

FETCH FIRST 3 ROWS ONLY;

Examples of TOP PERCENT

To select the first 50% of records found in the Customers table, execute the following

statement in SQL Server/MS Access:

SELECT TOP 50 PERCENT * FROM Customers;

Its equivalent in Oracle is the following:

SELECT * FROM Customers

FETCH FIRST 50 PERCENT ROWS ONLY;

Examples of ADD a WHERE Clause

In the following example, we are selecting the first three records from the Customers

table, where the Country is “Germany” for SQL Server/MS Access:

>> SELECT TOP 3 * FROM Customers

 WHERE Country='Germany';

23 | P a g e

Its equivalent in MySQL:

SELECT * FROM Customers

WHERE Country='Germany'

LIMIT 3;

Its equivalent in Oracle:

SELECT * FROM Customers

WHERE Country='Germany'

FETCH FIRST 3 ROWS ONLY;

SQL Min and Max

The MIN() function returns the smallest values from selected columns.

MIN() Syntax

SELECT MIN(column_name)

FROM table_name

WHERE condition;

The MAX() function returns the largest value from selected columns.

MAX() Syntax

SELECT MAX(column_name)

FROM table_name

WHERE condition;

In the following examples, we will use the Products table shown below:

Table 10 - Products Table in Min and Max Examples (Source:

https://www.w3schools.com/sql/sql_min_max.asp)

24 | P a g e

Example 1: Finds the price of the cheapest product

SELECT MIN(Price) AS SmallestPrice

FROM Products;

Example 2: Finds the price of the most expensive product

SELECT MAX(Price) AS LargestPrice

FROM Products;

SQL Count, Avg, Sum

The COUNT() function returns the number of rows that match a specified criterion.

COUNT() Syntax

SELECT COUNT(column_name)

FROM table_name

WHERE condition;

The AVG() function returns the average value of a numeric column.

AVG() Syntax

SELECT AVG(column_name)

FROM table_name

WHERE condition;

The SUM() function returns the total sum of a numeric column.

SUM() Syntax

SELECT SUM(column_name)

FROM table_name

WHERE condition;

25 | P a g e

We will use the Products table in the following examples below.

Table 11 - Products table in Count, Avg, Sum Examples (Source:

https://www.w3schools.com/sql/sql_count_avg_sum.asp)

Example of COUNT()

Execute a query to find the number of products:

SELECT COUNT(ProductID)

FROM Products;

Example of AVG()

Execute a query to find the average price of all products:

SELECT AVG(Price)

FROM Products;

Table 12 - OrdersDetails table in Count, Avg, Sum Examples (Source:

https://www.w3schools.com/sql/sql_count_avg_sum.asp)

In the following example, we will use the OrdersDetails table, shown above, to find the

sum of “Quantity”:

SELECT SUM(Quantity)

FROM OrderDetails;

https://www.w3schools.com/sql/sql_count_avg_sum.asp

26 | P a g e

SQL Like

The LIKE operator is used in a WHERE clause to search for a specified pattern in a

column.

LIKE Syntax

SELECT column1, column2, ...

FROM table_name

WHERE column LIKE pattern;

Here are some examples showing different LIKE operators with '%' and '_' wildcards:

Table 13 - LIKE operators (Source: https://www.w3schools.com/sql/sql_like.asp)

We will see some examples that will be using the Customers table shown below.

Table 14 - Customers table in LIKE examples (Source: https://www.w3schools.com/sql/sql_like.asp)

https://www.w3schools.com/sql/sql_like.asp
https://www.w3schools.com/sql/sql_like.asp

27 | P a g e

Example 1: Selects all customers with a Customer Name that starts with ‘a’.

SELECT * FROM Customers

WHERE CustomerName LIKE 'a%';

Example 2: Selects all Customer names ending with ‘a’.

SELECT * FROM Customers

WHERE CustomerName LIKE '%a';

Example 3: Selects all Customer names that contain ‘or’ in their name in any position.

SELECT * FROM Customers

WHERE CustomerName LIKE '%or%';

Example 4: Selects all Customer names that contain ‘r’ in the second position.

SELECT * FROM Customers

WHERE CustomerName LIKE '_r%';

Example 5: Selects all Customer names that begin with ‘a’ and have at least three

characters in length.

SELECT * FROM Customers

WHERE CustomerName LIKE 'a__%';

Example 6: Selects all Customer names that begin with ‘a’ and end with ‘o’.

SELECT * FROM Customers

WHERE CustomerName LIKE 'a%o';

Example 7: Selects all Customer names that do not begin with ‘a’.

SELECT * FROM Customers

WHERE CustomerName LIKE 'a%';

28 | P a g e

SQL Wildcards

A wildcard character substitutes one or more characters in a string. It is used with the

LIKE operator.

The LIKE operator is also used in a WHERE clause to search for a specified pattern

in a column, as we have seen in the previous subsection.

Wildcards in MS Access

Table 15 – Wildcards in Access (Source: https://www.w3schools.com/sql/sql_wildcards.asp)

Wildcards in SQL Server

Table 16 – Wildcards in SQL Server (Source: https://www.w3schools.com/sql/sql_wildcards.asp)

Wildcards can be used in combination; look at some examples at the table below:

Table 17 - Examples of Wildcards with % and ‘_’ (Source: https://www.w3schools.com/sql/sql_wildcards.asp)

Let’s see some examples with the Customers table.

https://www.w3schools.com/sql/sql_wildcards.asp
https://www.w3schools.com/sql/sql_wildcards.asp
https://www.w3schools.com/sql/sql_wildcards.asp

29 | P a g e

Table 18 - Customers table in WILDCARDS example (Source:

https://www.w3schools.com/sql/sql_wildcards.asp)

Examples with the % Wildcard

In this example, we are selecting all customers with a City starting with “ber”:

SELECT * FROM Customers

WHERE City LIKE 'ber%';

In the following example, we are selecting all customers with a City containing “es”:

SELECT * FROM Customers

WHERE City LIKE '%es%';

Examples with the _ Wildcard

Here, we are selecting all customers with a City starting with any character followed

by “ondon”:

SELECT * FROM Customers

WHERE City LIKE '_ondon';

In this example, we are again selecting all customers with a City starting with ‘L’,

followed by any character, followed by "n", followed by any character, followed by "on":

SELECT * FROM Customers

WHERE City LIKE 'L_n_on';

Examples with the [charlist] Wildcard

Here, we are selecting all customers with a City starting with ‘b’,’ s’, or ‘p’:

https://www.w3schools.com/sql/sql_wildcards.asp

30 | P a g e

SELECT * FROM Customers

WHERE City LIKE '[bsp]%';

In the following example, we are selecting all customers with City starting with ‘a’, ‘b’,

or ‘c’:

SELECT * FROM Customers

WHERE City LIKE '[a-c]%';

Examples with the [!charlist] Wildcard

The exclamation mark shows characters that do not contain a specified string. For

example, we want to select all customers with a City that does not start with ‘b’, ‘s’, or

‘p’:

SELECT * FROM Customers

WHERE City LIKE '[!bsp]%';

As an alternative, we can use the following:

SELECT * FROM Customers

WHERE City NOT LIKE '[bsp]%';

SQL In

The IN operator is used to specify multiple values in a WHERE clause. It can be

considered as satisfying various conditions.

Syntax 1:

SELECT column_name(s)

FROM table_name

WHERE column_name IN (value1, value2, ...);

31 | P a g e

Syntax 2:

SELECT column_name(s)

FROM table_name

WHERE column_name IN (SELECT STATEMENT);

There are two ways to use the IN operator, as you have seen.

Suppose that we have a table called “Customers” containing the following columns:

CustomerID, CustomerName, ContactName, Address, City, PostalCode and Country.

Table 19 - Customers Table in IN operator example (Source: https://www.w3schools.com/sql/sql_in.asp)

As an example, we want to select all the customers that are located in Germany,

France or UK:

SELECT * FROM Customers

WHERE Country IN (‘Germany’, ‘France’, ‘UK’)

Another example is selecting all the customers that are not located in Germany,

France or the UK:

SELECT * FROM Customers

WHERE Country NOT IN (‘Germany’, ‘France’, ‘UK’)

https://www.w3schools.com/sql/sql_in.asp

32 | P a g e

Let’s also consider a third example where we want to select customers that are from

the same countries as the suppliers:

SELECT * FROM Customers

WHERE Country IN (SELECT Country FROM Suppliers)

SQL Between

The BETWEEN operator provides a range of values to select from. The values can be

text, numbers or dates. The BETWEEN operator includes the starting and end values.

Syntax:

SELECT column_name(s)

FROM table_name

WHERE column_name BETWEEN value1 AND value2;

Let’s say that we have the following table, which contains information on different

products.

Table 20 - BETWEEN operator example (Source: https://www.w3schools.com/sql/sql_between.asp)

There will be a series of examples with the following operators: BETWEEN, NOT

BETWEEN, BETWEEN with IN, BETWEEN and NOT BETWEEN with text values and

BETWEEN dates.

BETWEEN Example: Selects all products with a price range of 10 to 20.

SELECT * FROM Products

WHERE Price BETWEEN 10 AND 20;

https://www.w3schools.com/sql/sql_between.asp

33 | P a g e

NOT BETWEEN Example: Shows all the products outside the range that we set in the

previous example.

SELECT * FROM Products

WHERE Price NOT BETWEEN 10 AND 20;

BETWEEN with IN Example: Selects all products with a price range of 10 to 20 and

does not show products with CategoryID 1, 2, or 3.

SELECT * FROM Products

WHERE Price BETWEEN 10 AND 20

AND CategoryID NOT IN (1,2,3);

BETWEEN with text values Example: Selects all products with a ProductName

between Carnarvon Tigers and Mozzarella di Giovanni.

SELECT * FROM Products

WHERE ProductName BETWEEN 'Carnarvon Tigers' AND 'Mozzarella di Giovanni'

ORDER BY ProductName;

NOT BETWEEN with text values Example: Selects all products with a ProductName

NOT between Carnarvon Tigers and Mozzarella di Giovanni.

SELECT * FROM Products

WHERE ProductName NOT BETWEEN 'Carnarvon Tigers' AND 'Mozzarella di

Giovanni'

ORDER BY ProductName;

34 | P a g e

Assume that we have the following table that contains information on different Orders:

Table 21 - BETWEEN operator example (Source: https://www.w3schools.com/sql/sql_between.asp)

BETWEEN Dates Example: Selects all orders with an OrderDate between '01-July-

1996' and '31-July-1996'.

There are two ways that this can be done, by either using a hashtag (#) or quote marks

(‘’):

SELECT * FROM Orders

WHERE OrderDate BETWEEN #07/01/1996# AND #07/31/1996#;

OR

SELECT * FROM Orders

WHERE OrderDate BETWEEN '1996-07-01' AND '1996-07-31';

SQL Aliases

Aliases assign a temporary name to a table or a column within a table. An alias exists

only for the duration of a query, and it is often used to make column names more

readable. An alias is created by using the keyword AS.

Syntax for column alias:

SELECT column_name AS alias_name

FROM table_name;

https://www.w3schools.com/sql/sql_between.asp

35 | P a g e

Syntax for table alias:

SELECT column_name(s)

FROM table_name AS alias_name;

Column Aliases

Let’s see an example that creates two aliases, one for each column:

SELECT CustomerID AS ID, CustomerName AS Customer

FROM Customers;

Another example creates two aliases again:

SELECT CustomerName AS Customer, ContactName AS [Contact Person]

FROM Customers;

Note that it is put in square brackets ([]) because the alias contains spaces. Quotation

marks can be used as an alternative to square brackets.

You also have the option of creating an alias that contains one or more columns, let’s

look at the example below to see how it works:

SELECT CustomerName, Address + ', ' + PostalCode + ' ' + City + ', ' + Country AS

Address

FROM Customers;

The above statement changes a little bit in MySQL:

SELECT CustomerName, CONCAT(Address,', ',PostalCode,', ',City,', ',Country) AS

Address

FROM Customers;

Table Aliases

The following example selects all the orders from the customer table with

CustomerID=4 (Around the Horn).

36 | P a g e

Here aliases are used to shorten the query:

SELECT o.OrderID, o.OrderDate, c.CustomerName

FROM Customers AS c, Orders AS o

WHERE c.CustomerName='Around the Horn' AND c.CustomerID=o.CustomerID;

A query without aliases would look something like this:

SELECT Orders.OrderID, Orders.OrderDate, Customers.CustomerName

FROM Customers, Orders

WHERE Customers.CustomerName='Around the Horn' AND

Customers.CustomerID=Orders.CustomerID;

SQL Joins

A JOIN clause combines rows from two or more tables based on a related column

found in both tables.

Let’s look at the Orders table and the Customers table:

Tables 22 & 23 - Orders and Customers Tables in JOIN example (Source:

https://www.w3schools.com/sql/sql_join.asp)

If you look at the two tables, you will notice a common column called the CustomerID.

Based on the common column, we can create an SQL statement that uses an INNER

JOIN, which selects records that have matching values in both tables.

Example:

SELECT Orders.OrderID, Customers.CustomerName, Orders.OrderDate

FROM Orders

https://www.w3schools.com/sql/sql_join.asp

37 | P a g e

INNER JOIN Customers ON Orders.CustomerID=Customers.CustomerID;

This command will create something like the following table:

Table 24 - JOIN example (Source: https://www.w3schools.com/sql/sql_join.asp)

There are four different joins in SQL:

1. (INNER) JOIN: Returns records that have matching values in both tables;

2. LEFT (OUTER) JOIN: Returns all records from the left table and the

corresponding matched records from the right table;

3. RIGHT (OUTER) JOIN: Returns all records from the right table and the

corresponding matched records from the left table;

4. FULL (OUTER) JOIN: Returns all records when there is a match in either the

left or the right table.

Figure 1 - Different types of JOINS (Source: https://www.w3schools.com/sql/sql_join.asp)

SQL Inner Join

The INNER JOIN keyword selects records that have matching values in both tables.

https://www.w3schools.com/sql/sql_join.asp
https://www.w3schools.com/sql/sql_join.asp

38 | P a g e

Syntax:

SELECT column_name(s)

FROM table1

INNER JOIN table2

ON table1.column_name = table2.column_name;

The same tables as the example in the previous subsection are used to perform an

inner join.

Tables 25 & 26 - Orders and Customers Tables in JOIN example (Source:

https://www.w3schools.com/sql/sql_join_inner.asp)

In this example, we want to retrieve the names of customers and their corresponding

Order IDs:

SELECT Orders.OrderID, Customers.CustomerName

FROM Orders

INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID;

Note that the INNER JOIN keyword will select all rows from both tables that match. If

records in the Orders table do not have matches in the Customers table, they will not

be selected.

In the following example, we will see how to join three tables that contain customer

and shipper information:

SELECT Orders.OrderID, Customers.CustomerName, Shippers.ShipperName

FROM ((Orders

INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID)

https://www.w3schools.com/sql/sql_join_inner.asp

39 | P a g e

INNER JOIN Shippers ON Orders.ShipperID = Shippers.ShipperID);

SQL Left Join

The LEFT JOIN keyword returns all records from the left table and the matching

records from the right table. If no matches are found, zero records from the right table

will be shown as a result.

Syntax:

SELECT column_name(s)

FROM table1

LEFT JOIN table2

ON table1.column_name = table2.column_name;

Note that the LEFT JOIN is called LEFT OUTER JOIN in some databases.

As an example, let’s select all customers and any orders that these customers might

have:

SELECT Customers.CustomerName, Orders.OrderID

FROM Customers

LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID

ORDER BY Customers.CustomerName;

Note that all records from the left table Customers will be returned, even if there are

no matches in the right table Orders.

SQL Right Join

The RIGHT JOIN keyword essentially follows the same logic from the right side instead

of the left one as described in the previous subsection.

The RIGHT JOIN will return all records from the right table and the matching records

from the left table, if there are any.

40 | P a g e

Syntax:

SELECT column_name(s)

FROM table1

RIGHT JOIN table2

ON table1.column_name = table2.column_name;

Consider the following two tables, Orders and Employees tables:

Table 28 - Orders Table in RIGHT JOIN example (Source: https://www.w3schools.com/sql/sql_join_right.asp)

Table 29 - Employees Table in RIGHT JOIN example (Source:

https://www.w3schools.com/sql/sql_join_right.asp)

The following example will return all employees and any orders that they might have

placed:

SELECT Orders.OrderID, Employees.LastName, Employees.FirstName

FROM Orders

RIGHT JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID

ORDER BY Orders.OrderID;

Note that the RIGHT JOIN keyword will return all records from the right table,

Employees, even if there are no matches found in the left table, Orders. The same

logic applies as in the LEFT JOIN that we saw earlier.

https://www.w3schools.com/sql/sql_join_right.asp
https://www.w3schools.com/sql/sql_join_right.asp

41 | P a g e

SQL Full Join

The FULL JOIN keyword returns all records when matching records are found in either

the right or the left table.

Note that FULL OUTER JOIN and FULL JOIN are the same thing and a FULL JOIN

can potentially return large result-sets.

Syntax:

SELECT column_name(s)

FROM table1

FULL OUTER JOIN table2

ON table1.column_name = table2.column_name

WHERE condition;

Consider the following two tables, the Orders table and the Customers table:

Table 30 - Orders Table in FULL JOIN example (Source: https://www.w3schools.com/sql/sql_join_full.asp)

Table 31 - Customers Table in FULL JOIN example (Source: https://www.w3schools.com/sql/sql_join_full.asp)

An example that selects all customers and orders:

SELECT Customers.CustomerName, Orders.OrderID

FROM Customers

FULL OUTER JOIN Orders ON Customers.CustomerID=Orders.CustomerID

https://www.w3schools.com/sql/sql_join_full.asp
https://www.w3schools.com/sql/sql_join_full.asp

42 | P a g e

ORDER BY Customers.CustomerName;

The result of this full join can look something like this:

Table 32 - FULL JOIN on Customers and Orders Tables Example (Source:

https://www.w3schools.com/sql/sql_join_full.asp)

Here we can see that it returns all matching records from both tables even if no

common matches are found between the two tables. In the case of no common

matches, a null value is assigned.

SQL Self Join

A self-join is considered a regular join, but the table is joined within.

Syntax:

SELECT column_name(s)

FROM table1 T1, table1 T2

WHERE condition;

T1 and T2 are aliases used for the same table.

Let’s take the Customers table as an example:

Table 33 - Customers Table in SELF JOIN example (Source: https://www.w3schools.com/sql/sql_join_self.asp)

https://www.w3schools.com/sql/sql_join_full.asp
https://www.w3schools.com/sql/sql_join_self.asp

43 | P a g e

Here, we want to select customers that are from the same city:

SELECT A.CustomerName AS CustomerName1, B.CustomerName AS

CustomerName2, A.City

FROM Customers A, Customers B

WHERE A.CustomerID <> B.CustomerID

AND A.City = B.City

ORDER BY A.City;

SQL Union

The UNION operator is used to combine the result-set of two or more SELECT

statements.

There are a few requirements to enable a UNION:

1. Every SELECT statement within the UNION must have the same number of

columns;

2. The columns must have similar data types;

3. The columns in every SELECT statement must be in the same order.

Syntax:

SELECT column_name(s) FROM table1

UNION

SELECT column_name(s) FROM table2;

* Note that the UNION operator selects only distinct values by default.

To allow duplicate values, use UNION ALL:

SELECT column_name(s) FROM table1

UNION ALL

SELECT column_name(s) FROM table2;

* Note that the column names in the two SELECT statements are usually equal.

44 | P a g e

Now let’s see some examples of UNION, UNION ALL, and UNION with where

statements to understand a little bit better how we can use it.

Table 34 - Customers Table in UNION example (Source: https://www.w3schools.com/sql/sql_union.asp)

Table 35 - Suppliers Table in UNION example (Source: https://www.w3schools.com/sql/sql_union.asp)

The first example is used to return distinct cities from both tables shown above:

SELECT City FROM Customers

UNION

SELECT City FROM Suppliers

ORDER BY City;

Since we are using UNION, the suppliers from the same city will only be listed once.

If you want to see the duplicated values, use UNION ALL.

The following example will do precisely that and return any duplicate values from both

tables:

SELECT City FROM Customers

UNION ALL

SELECT City FROM Suppliers

ORDER BY City;

https://www.w3schools.com/sql/sql_union.asp
https://www.w3schools.com/sql/sql_union.asp

45 | P a g e

The following example will return the distinct German cities from both the “Customers”

and “Suppliers” tables with the use of WHERE:

SELECT City, Country FROM Customers

WHERE Country = ‘Germany’

UNION

SELECT City, Country FROM Customers

WHERE Country = ‘Germany’

ORDER BY City;

This example is similar to the previous one, but we will be returning possible duplicate

values:

SELECT City, Country FROM Customers

WHERE Country = ‘Germany’

UNION ALL

SELECT City, Country FROM Customers

WHERE Country = ‘Germany’

ORDER BY City;

Another example will list all customers and suppliers:

SELECT 'Customer' AS Type, ContactName, City, Country

FROM Customers

UNION

SELECT 'Supplier', ContactName, City, Country

FROM Suppliers;

See that we used AS here to create an alias for the given query that will disappear

after completing it.

SQL Group By

The GROUP BY statement groups rows with the same values into summary rows. As

an example, consider that you want to find the number of customers in each country.

46 | P a g e

Also, the GROUP BY statement is often used with aggregate functions such as

COUNT(), MAX(), MIN(), SUM(), AVG() to group the result by one or more columns.

Syntax:

SELECT column_name(s)

FROM table_name

WHERE condition

GROUP BY column_name(s)

ORDER BY column_name(s);

We will be using the Customers table, shown below, in our examples.

Table 36 - Customers Table in GROUP BY example (Source: https://www.w3schools.com/sql/sql_groupby.asp)

As a first example, let’s list the number of customers found in each county:

SELECT COUNT(CustomerID), Country

FROM Customers

GROUP BY Country;

As a second example, we will again list the number of customers in each country, but

in descending order:

SELECT COUNT(CustomerID), Country

FROM Customers

GROUP BY Country;

ORDER BY COUNT(CustomerID) DESC;

https://www.w3schools.com/sql/sql_groupby.asp

47 | P a g e

In the following example, we will use GROUP BY with JOIN by using the Orders and

Shippers tables.

Table 37 - Orders Table in GROUP BY example (Source: https://www.w3schools.com/sql/sql_groupby.asp)

Table 38 - Shippers Table in GROUP BY example (Source: https://www.w3schools.com/sql/sql_groupby.asp)

In this example, we will list the number of orders sent by each shipper:

SELECT Shippers.ShipperName, COUNT(Orders.OrderID) AS NumberOfOrders

FROM Orders

LEFT JOIN Shippers ON Orders.ShipperID = Shippers.ShipperID

GROUP BY ShipperName;

See here we started by selecting the Shippers’ names in the Shippers table and

counted the orders based on their OrderID saved as an alias.

Then we performed a LEFT JOIN to join the Shippers table (table 2) on the Orders

table (table 1) and group them by the Shipper’s name.

SQL Having

The HAVING clause was added to SQL because WHERE cannot be used with

aggregate functions.

Syntax:

SELECT column_name(s)

FROM table_name

https://www.w3schools.com/sql/sql_groupby.asp
https://www.w3schools.com/sql/sql_groupby.asp

48 | P a g e

WHERE condition

GROUP BY column_name(s)

HAVING condition

ORDER BY column_name(s);

Table 39 - Customers Table in HAVING example (Source: https://www.w3schools.com/sql/sql_having.asp)

In this example, we will be using the Customers table once again. Here, we want to

list the number of customers found in each country, but we also want to include

countries that have more than five customers.

SELECT COUNT(CustomerID), Country

FROM Customers

GROUP BY Country

HAVING COUNT(CustomerID) > 5;

In this example, we want to list the number of customers per country again and include

countries with more than five customers in descending order.

SELECT COUNT(CustomerID), Country

FROM Customers

GROUP BY Country

HAVING COUNT(CustomerID) > 5

ORDER BY COUNT(CustomerID) DESC;

Let’s try a few other examples by combining what we have learnt so far.

https://www.w3schools.com/sql/sql_having.asp

49 | P a g e

We will use the Orders and Employees tables in the following two examples.

Table 40 - Orders Table in HAVING example (Source: https://www.w3schools.com/sql/sql_having.asp)

Table 41 - Orders Table in HAVING example (Source: https://www.w3schools.com/sql/sql_having.asp)

The following example will list the employees that have registered more than ten

orders:

SELECT Employees.LastName, COUNT(Orders.OrderID) AS NumberOfOrders

FROM (Orders

INNER JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID)

GROUP BY LastName

HAVING COUNT(Orders.OrderID) > 10;

In this example, we will list the employees “Davolio” or “Fuller” if they have registered

orders more than 25 times:

SELECT Employees.LastName, COUNT(Orders.OrderID) AS NumberOfOrders

FROM (Orders

INNER JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID)

WHERE LastName = ‘Davolio’ OR LastName = ‘Fuller’

GROUP BY LastName

HAVING COUNT(Orders.OrderID) > 25;

https://www.w3schools.com/sql/sql_having.asp
https://www.w3schools.com/sql/sql_having.asp

50 | P a g e

SQL Select Into

The SELECT INTO statement copies data from one table into a new table.

Syntax to copy all columns into a new table:

SELECT *

INTO newtable [IN externaldb]

FROM oldtable

WHERE condition;

Syntax to copy only some columns into a new table:

SELECT column1, column2, column3, ...

INTO newtable [IN externaldb]

FROM oldtable

WHERE condition;

The new table will keep the column names and types the same as the old table. You

can create new columns with the AS clause.

Example of creating a backup copy of Customers:

SELECT * INTO CustomersBackup2017

FROM Customers;

Example of using IN clause to copy the table into a new table in another database:

SELECT * INTO CustomersBackup2017 IN 'Backup.mdb'

FROM Customers;

Example to copy only a few columns into a new table:

SELECT CustomerName, ContactName INTO CustomersBackup2017

FROM Customers;

Example to copy only the German customers into a new table:

51 | P a g e

SELECT * INTO CustomersGermany

FROM Customers

WHERE Country = 'Germany';

Example to copy data from multiple tables into a new table:

SELECT Customers.CustomerName, Orders.OrderID

INTO CustomersOrderBackup2017

FROM Customers

LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID;

SELECT INTO can also be used to create a new, empty table using the schema of

another.

To do that, add a WHERE clause that returns no data:

SELECT * INTO newtable

FROM oldtable

WHERE 1 = 0;

SQL Insert Into Select

The INSERT INTO SELECT statement copies data from one table and inserts it into

another. It requires the data types in the source and target table to match.

Syntax to copy all columns from one table to another:

INSERT INTO table2

SELECT * FROM table1

WHERE condition;

Syntax to copy only some columns from one table to another:

INSERT INTO table2 (column1, column2, column3, ...)

SELECT column1, column2, column3, ...

FROM table1

52 | P a g e

WHERE condition;

Table 42 - Customers Table in INSERT INTO SELECT example (Source:

https://www.w3schools.com/sql/sql_insert_into_select.asp)

Table 43 - Suppliers Table in INSERT INTO SELECT example (Source:

https://www.w3schools.com/sql/sql_insert_into_select.asp)

We will be using the Customers and Suppliers tables, shown above, in the following

examples.

The first example copies Suppliers into Customers (note that the columns that are not

filled with data will contain null values):

INSERT INTO Customers (CustomerName, City, Country)

SELECT SupplierName, City, Country FROM Suppliers;

This example copies Suppliers into Customers to fill all columns:

INSERT INTO Customers (CustomerName, ContactName, Address, City,

PostalCode, Country)

SELECT SupplierName, ContactName, Address, City, PostalCode, Country FROM

Suppliers;

The third example copies only the German suppliers into Customers:

INSERT INTO Customers (CustomerName, City, Country)

SELECT SupplierName, City, Country FROM Suppliers

WHERE Country='Germany';

https://www.w3schools.com/sql/sql_insert_into_select.asp
https://www.w3schools.com/sql/sql_insert_into_select.asp

53 | P a g e

SQL Case

The CASE statement goes through a series of conditions and returns a value when

the first condition is met. Think of it as an if, then, else statement.

When one condition is found true, it will stop going through the loop. If no conditions

are found true, it will return the value in the ELSE clause.

Note that if there isn’t an ELSE clause and no conditions are found true, it will return

NULL.

Syntax:

CASE

 WHEN condition1 THEN result1

 WHEN condition2 THEN result2

 WHEN conditionN THEN resultN

 ELSE result

END;

Table 44 - Orders Table in CASE example (Source: https://www.w3schools.com/sql/sql_case.asp)

In the following examples, we will use the Orders table.

The first example will go through a series of conditions and return a value when the

first condition is met:

SELECT OrderID, Quantity,

https://www.w3schools.com/sql/sql_case.asp

54 | P a g e

CASE

 WHEN Quantity > 30 THEN 'The quantity is greater than 30'

 WHEN Quantity = 30 THEN 'The quantity is 30’

 ELSE 'The quantity is under 30'

END AS QuantityText

FROM OrderDetails;

In this second example, we will order the customers by City. Note that if City is NULL,

it will be ordered by Country.

SELECT CustomerName, City, Country

FROM Customers

ORDER BY

 (CASE

 WHEN City IS NULL THEN Country

 ELSE City

END);

SQL Null Functions

The NULL functions include the following: IFNULL(), ISNULL(), COALESCE(), and

NVL().

Here, we will use the “Products” table:

Table 45 - Products Table in NULL functions example (Source: https://www.w3schools.com/sql/sql_isnull.asp)

Let’s say that the “UnitsOnOrder” column is optional and may contain NULL values.

Example:

SELECT ProductName, UnitPrice * (UnitsInStock + UnitsOnOrder)

https://www.w3schools.com/sql/sql_isnull.asp

55 | P a g e

FROM Products;

Here we can see that if any of the UnitsOnOrder values are null, the result will also be

null.

Let’s see how we can overcome this issue.

In MySQL, you can use the ISNULL() function that lets you return an alternative value

if an expression is null:

SELECT ProductName, UnitPrice * (UnitsInStock + IFNULL(UnitsOnOrder, 0))

FROM Products;

Or we can use the COALESCE() function:

SELECT ProductName, UnitPrice * (UnitsInStock + COALESCE(UnitsOnOrder, 0))

FROM Products;

In SQL Server, the ISNULL() function does the same thing as in MySQL:

SELECT ProductName, UnitPrice * (UnitsInStock + IFNULL(UnitsOnOrder, 0))

FROM Products;

In MS Access IsNull() function returns TRUE(-1) if the expression is a null value,

otherwise FALSE (0):

SELECT ProductName, UnitPrice * (UnitsInStock + IIF(IsNull(UnitsOnOrder), 0,

UnitsOnOrder))

FROM Products;

In Oracle, the NVL() function does the same thing:

SELECT ProductName, UnitPrice * (UnitsInStock + NVL(UnitsOnOrder, 0))

FROM Products;

SQL Comments

SQL Comments explain SQL statement sections or prevent their execution.

56 | P a g e

Note that the examples in this section are not supported in Firefox and Microsoft Edge,

which are Microsoft Access databases. Comments are generally not supported in

Microsoft Access databases.

Single line comments in SQL start with - - (two dashes):

--Select all:

SELECT * FROM Customers;

Or it can be used like this to ignore the end of the line:

SELECT * FROM Customers -- WHERE City='Berlin';

Or to ignore a statement:

--SELECT * FROM Customers;

SELECT * FROM Products;

Multiple-line comments start with /* and end with */. Any text written between these

two will be ignored.

Example:

/*Select all the columns

of all the records

in the Customers table:*/

SELECT * FROM Customers;

To ignore part of a statement, you can also use /**/.

Example 1:

SELECT CustomerName, /*City,*/ Country FROM Customers;

Example 2:

SELECT * FROM Customers WHERE (CustomerName LIKE 'L%'

OR CustomerName LIKE 'R%' /*OR CustomerName LIKE 'S%'

57 | P a g e

OR CustomerName LIKE 'T%'*/ OR CustomerName LIKE 'W%')

AND Country='USA'

ORDER BY CustomerName;

SQL Operators

Arithmetic Operators used in SQL:

Table 46 - Arithmetic Operators (Source: https://www.w3schools.com/sql/sql_operators.asp)

Bitwise operators used in SQL:

Table 47 – Bitwise operators (Source: https://www.w3schools.com/sql/sql_operators.asp)

https://www.w3schools.com/sql/sql_operators.asp
https://www.w3schools.com/sql/sql_operators.asp

58 | P a g e

Comparison operators used in SQL:

Table 48 – Comparison operators (Source: https://www.w3schools.com/sql/sql_operators.asp)

Compound operators used in SQL:

Table 49 - Compound operators (Source: https://www.w3schools.com/sql/sql_operators.asp)

https://www.w3schools.com/sql/sql_operators.asp
https://www.w3schools.com/sql/sql_operators.asp

59 | P a g e

Logical operators used in SQL:

Table 50 - Logical operators (Source: https://www.w3schools.com/sql/sql_operators.asp)

SQL Database

As we have mentioned in the previous section that was dedicated to the basic

statements used in SQL, this programming language is mainly used for relational

databases. Therefore, in this section, we will learn how to create a database, modify

it, and manipulate it with SQL.

Let’s start simple, and we will build into slightly more complicated statements.

SQL Create DB

The CREATE DATABASE statement creates a new SQL database.

Syntax:

CREATE DATABASE DatabaseName;

https://www.w3schools.com/sql/sql_operators.asp

60 | P a g e

Note: Always remember that the name of the database should be unique within the

Relational Database Management System (RDMS) that you are using, and make sure

that you have admin privileges before creating any database.

Let’s say you want to create a test database. You would use the following statement:

CREATE DATABASE testDB;

SQL Drop DB

The DROP DATABASE statement deletes an existing SQL database.

DROP DATABASE DatabaseName;

Before you delete the database, make sure that you don’t need any of the information

that it contains because it completely deletes it.

Remember the database that we just created called “testDB”? Now we are going to

delete it.

Example:

DROP DATABASE testDB;

SQL Backup DB

The BACKUP DATABASE statement does a complete backup on an existing SQL

database.

To use this statement, you need to provide two things: the name of the database and

the file path.

BACKUP DATABASE DatabaseName

TO DISK = ‘filepath’

Example:

BACKUP DATABASE testDB

61 | P a g e

TO DISK = 'D:\backups\testDB.bak';

Note: To avoid technical problems, it is better to back up the database to a different

drive than the one the existing database is on.

There is also another option where you perform a differential backup based on

changes that have been made since the last complete database backup. This type of

backup also reduces the backup time.

To do this, you follow this syntax:

BACKUP DATABASE DatabaseName

TO DISK = 'filepath'

WITH DIFFERENTIAL;

Example:

BACKUP DATABASE testDB

TO DISK = 'D:\backups\testDB.bak'

WITH DIFFERENTIAL;

SQL Create Table

The CREATE TABLE statement creates a new table in a database.

Syntax:

CREATE TABLE table_name (

 column1 datatype,

 column2 datatype,

 column3 datatype,

 …….

);

In this statement, you need to specify the names of the columns and the type of

data that the column will contain.

62 | P a g e

There are many data types such as integer, date or varchar. Depending on the type

of data that you want to store, you choose the most suitable option. For instance, if

you have a column named “Date of Birth”, then you would probably choose the Date

as the data type.

Example:

CREATE TABLE Persons (

 PersonID int,

 LastName varchar(255),

 FirstName varchar(255),

 Address varchar(255),

 City varchar(255)

);

This example will create a table with the name Persons and will contain 5 columns.

The PersonID will contain an integer (int); the columns LastName, FirstName,

Address, and City will contain characters with a maximum length of 255.

The table will look something like this without any data:

Table 51 - Empty table in CREATE TABLE Example (Source:

https://www.w3schools.com/sql/sql_create_table.asp)

You can also create a table by using another table and choosing which columns you

want in the new table. Keep in mind that the data of the existing table will fill the entries

of the new table.

The syntax is as follows:

CREATE TABLE new_table_name AS

SELECT column1, column2,...

FROM existing_table_name

https://www.w3schools.com/sql/sql_create_table.asp

63 | P a g e

WHERE;

As you have learnt in the previous section:

• SELECT specifies the columns from the existing table,

• FROM specifies the name of the existing table, and

• WHERE can be used if you want a set of records that fulfil a specified condition.

Example:

CREATE TABLE TestTable AS

SELECT customername, contactname

FROM customers;

SQL Drop Table

Similar to the DROP DATABASE statement that we saw earlier, the DROP TABLE

statement deletes an existing table in a database.

Remember that you need to be sure that you do not need any of the information

contained in a table before deleting it.

Syntax:

DROP TABLE TableName;

Example:

DROP TABLE Persons;

You can also choose to delete the data contained in a table, but not the table itself.

Maybe you created a new table from an existing table that has the structure that you

want, but you want to add completely new entries. That is where TRUNCATE TABLE

is useful.

Syntax:

TRUNCATE TABLE TableName;

Example:

64 | P a g e

TRUNCATE TABLE Persons;

SQL Alter Table

The ALTER TABLE statement can add, delete or modify columns in an existing table.

Also, it can be used to add and drop constraints on an existing table.

Let’s see the syntax of adding a column first:

ALTER TABLE TableName

ADD column_name datatype;

This is familiar to how we created a table by specifying the name of the column and

the type of data to be contained in that column.

Example:

ALTER TABLE Customers

ADD Email varchar(255);

To delete a column in a table, as we have seen before, you use the DROP statement.

Keep in mind that some database systems do not allow for users to delete a column.

Syntax:

ALTER TABLE TableName

DROP COLUMN ColumnName;

As an example, let’s delete the column that we created:

ALTER TABLE Customers

DROP COLUMN Email;

To change the data type of a column, you can use the following statements depending

on the RDBMS that you are using:

• ALTER COLUMN (for SQL Server/MS Access);

• MODIFY COLUMN (for My SQL/ Oracle prior to version 10G);

• MODIFY (for Oracle version 10G and later).

65 | P a g e

Syntax:

ALTER TABLE TableName

ALTER COLUMN ColumnName datatype;

Note that the second statement is the one that changes depending on the RDBMS

that you are using from ALTER COLUMN to MODIFY COLUMN or MODIFY. The rest

stays the same.

Let’s see an example to understand this statement a bit better. The table underneath

is the “Persons” table and contains information about different people.

Table 52 - ALTER TABLE Example (Source: https://www.w3schools.com/sql/sql_alter.asp)

As an example, let’s say that we wanted to add a column named “DateofBirth” in this

table. We will use the following statement:

ALTER TABLE Persons

ADD DateofBirth date;

The new column that we added to the table has the data type of date, which means

that it stores data in a date format. Underneath, you can see the table with the new

column added.

Table 53 - ALTER TABLE Example (Source: https://www.w3schools.com/sql/sql_alter.asp)

However, what if you changed your mind and wanted to change the data type of the

new column, then you can use the ALTER COLUMN statement. For example, we can

https://www.w3schools.com/sql/sql_alter.asp
https://www.w3schools.com/sql/sql_alter.asp

66 | P a g e

change the newly added column’s type from date to year. To do this, use the following

statement:

ALTER TABLE Persons

ALTER COLUMN DateofBirth year;

The year data type holds a year in two- or four-digits format.

To delete the column that we just altered, we use the DROP COLUMN statement.

ALTER TABLE Persons

DROP COLUMN DateofBirth;

Our table will go back looking the way it did in the beginning.

Table 54 - ALTER TABLE Example (Source: https://www.w3schools.com/sql/sql_alter.asp)

SQL Constraints

SQL Constraints are used when the table is created with the statement CREATE

TABLE or after the table is created with the statement ALTER TABLE.

Syntax:

CREATE TABLE table_name (

 column1 datatype constraint,

 column2 datatype constraint,

 column3 datatype constraint,

);

https://www.w3schools.com/sql/sql_alter.asp

67 | P a g e

Constraints are used to specify a set of rules and restrictions that apply to a column or

a table. They are used to ensure the integrity, accuracy, and reliability of the data. If

the constraints are applied to a table, then all columns need to adhere to these

constraints.

The following constraints are the ones that are most commonly used:

● NOT NULL

● UNIQUE

● PRIMARY KEY

● FOREIGN KEY

● CHECK

● DEFAULT

● CREATE INDEX

We will go through each of these constraints to explain their usage and syntax with

examples.

SQL Not Null

In SQL, columns can hold null values by default. The NOT NULL constraint is used to

avoid null values in columns. This is particularly important to ensure that when a new

entry is added to a table all the necessary fields are filled.

As an example, let’s say that we want to create a table named “Persons” and we want

to ensure that the columns “ID”, “LastName”, and “FirstName” do not hold any null

values:

CREATE TABLE Persons (

 ID int NOT NULL,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255) NOT NULL,

 Age int

);

68 | P a g e

If, for some reason, you want to alter an already existing table to add constraints, you

can use the following statement:

ALTER TABLE Persons

MODIFY Age int NOT NULL;

SQL Unique

The UNIQUE constraint is used to ensure that all values stored in a column are unique

among the rows in a table. To make this clearer, think of the variable ID. You wouldn’t

want two people to have the same ID, therefore you would use the constraint UNIQUE

on this occasion.

SQL Server / Oracle / MS Access:

CREATE TABLE Persons (

 ID int NOT NULL UNIQUE,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int

);

My SQL:

CREATE TABLE Persons (

 ID int NOT NULL,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int,

 UNIQUE (ID)

);

As you can see, depending on the RDBMS that you are using, there are a few

adjustments on where the UNIQUE constraint is put in the code.

69 | P a g e

If you want to name or define a UNIQUE constraint on multiple columns, use the

following:

CREATE TABLE Persons (

 ID int NOT NULL,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int,

 CONSTRAINT UC_Person UNIQUE (ID,LastName)

);

You can also add a UNIQUE constraint after the table has been created by using the

ALTER TABLE statement that we learnt earlier.

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons

ADD UNIQUE (ID);

If you also want to name and define a UNIQUE constraint on multiple already existing

columns, you use the following statement:

ALTER TABLE Persons

ADD CONSTRAINT UC_Persons UNIQUE (ID, LastName);

To delete the UNIQUE constraint, you can use the following statement:

My SQL:

ALTER TABLE Persons

DROP INDEX UC_Persons;

SQL Server/Oracle/ MS Access:

ALTER TABLE Persons

DROP CONSTRAINT UC_Persons;

70 | P a g e

SQL Primary Key

The PRIMARY KEY constraint is used to uniquely identify each row or record in a

table. Note that primary keys must contain unique values, but cannot contain null

values.

A table can only have ONE primary key and that primary key can consist of one or

multiple columns.

SQL Server/Oracle/MS Access:

CREATE TABLE Persons (

 ID int NOT NULL PRIMARY KEY,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int

);

MySQL:

CREATE TABLE Persons (

 ID int NOT NULL,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int,

 PRIMARY KEY (ID)

);

The following example allows you to name and define a PRIMARY KEY constraint on

multiple columns:

CREATE TABLE Persons (

 ID int NOT NULL,

 LastName varchar(255) NOT NULL,

71 | P a g e

 FirstName varchar(255),

 Age int,

 CONSTRAINT PK_Person PRIMARY KEY (ID,LastName)

);

Note that the PRIMARY KEY is still one, but the value of the primary key encompasses

two columns.

You can also create a PRIMARY KEY constraint on an existing table by using the

following statement:

ALTER TABLE Persons

ADD PRIMARY KEY (ID);

To add and define a PRIMARY KEY constraint on an existing table, use the following

statement:

ALTER TABLE Persons

ADD CONSTRAINT PK_Persons PRIMARY KEY (ID, LastName);

To drop a PRIMARY KEY constraint, use the following statements according to your

RDBMS.

MySQL:

ALTER TABLE Persons

DROP PRIMARY KEY;

SQL Server / Oracle / MS Access:

ALTER TABLE Persons

DROP PRIMARY KEY;

72 | P a g e

SQL Foreign Key

The FOREING KEY represents the columns of a table that are linked to a primary key

in another table. The table that has a foreign key is called the child table, whereas the

table that has the primary key is called the referenced or parent table.

This type of constraint is used to prevent any actions that would destroy links between

parent and child tables.

Let’s consider the following two tables:

Table 55 - Persons table in FOREING KEY Example (Source:

https://www.w3schools.com/sql/sql_foreignkey.asp)

Table 56 - Orders table in FOREING KEY Example (Source: https://www.w3schools.com/sql/sql_foreignkey.asp)

These two tables are linked by the column “PersonID” that is found in both tables.

Now, the primary key is located in the Persons table and the foreign key is the

“PersonID” in the Orders table.

https://www.w3schools.com/sql/sql_foreignkey.asp
https://www.w3schools.com/sql/sql_foreignkey.asp

73 | P a g e

The FOREIGN KEY constraint works by preventing the input of invalid data in the

foreign key column, because it is linked with the parent table and its values need to be

identical.

To use the FOREIGN KEY constraint when creating a table, you can use the following

statement according to your RDBMS.

SQL Server / Oracle / MS Access:

CREATE TABLE Orders (

 OrderID int NOT NULL PRIMARY KEY,

 OrderNumber int NOT NULL,

 PersonID int FOREIGN KEY REFERENCES Persons(PersonID)

);

My SQL:

CREATE TABLE Orders (

 OrderID int NOT NULL,

 OrderNumber int NOT NULL,

 PersonID int,

 PRIMARY KEY (OrderID),

 FOREIGN KEY (PersonID) REFERENCES Persons(PersonID)

);

This statement linked the Orders table to the Persons table with the FOREIGN KEY

constraint based on PersonID column.

SQL Check

The CHECK constraint is used to specify the values allowed in a column or in certain

columns of a table based on values found in other columns of the same row.

Example of CHECK constraint on CREATE TABLE

74 | P a g e

The following example is used to ensure that a person is not under the age of 18, so

the CHECK constraint is added to the “Age” column.

MySQL:

CREATE TABLE Persons (

 ID int NOT NULL,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int,

 CHECK (Age>=18)

);

SQL Server / Oracle / MS Access:

CREATE TABLE Persons (

 ID int NOT NULL,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int CHECK (Age>=18)

);

If you want to name a CHECK constraint and use the constraint on multiple columns,

you can use the following statement.

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons (

 ID int NOT NULL,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int,

 City varchar(255),

 CONSTRAINT CHK_Person CHECK (Age>=18 AND City= ‘Sandnes’)

);

75 | P a g e

Example of CHECK constraint on ALTER TABLE

To create a constraint on an already existing table, use the following statement.

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons

ADD CHECK (Age>=18);

To name a constraint and create it on multiple columns, you can use:

ALTER TABLE Persons

ADD CONSTRAINT CHK_Person CHECK (Age>=18 AND City= ‘Sandnes’);

Example of DROP a CHECK constraint

To eliminate a CHECK constraint, you can use the following according to the RDMBS.

SQL Server / Oracle / MS Access:

ALTER TABLE Persons

DROP CONSTRAINT CHK_PersonAge;

MySQL:

ALTER TABLE Persons

DROP CHECK CHK_PersonAge;

SQL Default

The DEFAULT constraint is used to specify a default value for a column. If there are

no other values specified, the default value will be added to all new records.

Example of DEFAULT constraint on CREATE TABLE

The following example adds a default value to the City column when the Persons table

is created:

CREATE TABLE Persons (

 ID int NOT NULL,

 LastName varchar(255) NOT NULL,

76 | P a g e

 FirstName varchar(255),

 Age int,

 City varchar(255) DEFAULT 'Sandnes'

);

This constraint can also be used to insert system values with functions such as

GETDATE():

CREATE TABLE Orders (

 ID int NOT NULL,

 OrderNumber int NOT NULL,

 OrderDate date DEFAULT GETDATE()

);

Example of DEFAULT constraint on ALTER TABLE

In this example, the column “City” is used to create a DEFAULT constraint when we

are altering an already existing table.

MySQL:

ALTER TABLE Persons

ALTER City SET DEFAULT 'Sandnes';

SQL Server:

ALTER TABLE Persons

ADD CONSTRAINT df_City

DEFAULT 'Sandnes' FOR City;

MS Access:

ALTER TABLE Persons

ALTER COLUMN City SET DEFAULT ‘Sandnes’;

Oracle:

ALTER TABLE Persons

77 | P a g e

MODIFY City DEFAULT 'Sandnes';

Example of DROP a DEFAULT constraint

MySQL:

ALTER TABLE Persons

ALTER City DROP DEFAULT;

SQL Server / Oracle / MS Access:

ALTER TABLE Persons

ALTER COLUMN City DROP DEFAULT;

SQL Index

The CREATE INDEX statement creates an index on a table. Indexes are useful when

you want to retrieve data more quickly.

Please note that tables with indexes take more time to update in comparison to tables

without. Therefore, it is suggested to only create indexes on columns that are

frequently searched.

To CREATE INDEX on a table where duplicate values are allowed, use the following

syntax:

CREATE INDEX index_name

ON table_name (column1, column2, ...);

To CREATE UNIQUE INDEX on a table where duplicate values are not allowed, use

the following syntax:

CREATE UNIQUE INDEX index_name

ON table_name (column1, column2, ...);

Keep in mind that creating indexes varies from database to database, so always check

the syntax to create one in your database.

78 | P a g e

Examples of CREATE INDEX

In this example, we are creating an index on the LastName column by specifying the

name idx_lastname:

CREATE INDEX idx_lastname

ON Persons (LastName);

To create an index on a combination of columns, use the following statement:

CREATE INDEX idx_pname

ON Persons (LastName, FirstName);

If you want, you can add more columns in the parenthesis.

Examples of DROP INDEX

If you want to delete an index, use the following statement according to your RDBMS.

MS Access:

DROP INDEX index_name ON table_name;

SQL Server:

DROP INDEX table_name.index_name;

DB2/Oracle:

DROP INDEX index_name;

MySQL:

ALTER TABLE table_name

DROP INDEX index_name;

79 | P a g e

SQL Auto Increment

Auto-increment is used to generate unique numbers automatically when a new record

is entered into a table. This is usually used on the primary key field in order to ensure

that no one person has the same ID.

This feature uses different syntax in MySQL, SQL Server, Access and Oracle.

Therefore, we will be going through each of these to explain how to use Auto-

Increment.

MySQL:

CREATE TABLE Persons (

 Personid int NOT NULL AUTO_INCREMENT,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int,

 PRIMARY KEY (Personid)

);

In MySQL, AUTO_INCREMENT adds the auto-increment feature and by default, the

value set is 1 and it goes up by 1 each time.

If you would like the sequence to start from a different value, use the following

statement:

ALTER TABLE Persons AUTO_INCREMENT=100;

If you enter a new record into the Persons table, you will not have to specify a value

for the “PersonID” column since it will be generated automatically:

INSERT INTO Persons (FirstName,LastName)

VALUES ('Lars','Monsen');

SQL Server

80 | P a g e

We are following the same example as above, where we use the “Personsid” column

as the primary key in the Persons table:

CREATE TABLE Persons (

 Personid int IDENTITY(1,1) PRIMARY KEY,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int

);

In SQL Server, the auto-increment feature uses the keyword IDENTIFY to be

activated. The two values in the parenthesis indicate (starting value, adding value for

each new record). It will start at 1 and go up by 1 each time a new record is entered.

If you wanted to change the starting value to 10 and to add 5 each time a new record

is added, you would write it like this IDENTIFY (10,5).

When entering new records, you do not need to specify the Personsid. It will be

automatically generated as in the example above.

MS Access

CREATE TABLE Persons (

 Personid AUTOINCREMENT PRIMARY KEY,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int

);

MS Access uses AUTOINCREMENT keyword to activate the auto-increment feature.

Similar to the other two, the starting value is one and it adds up by one each time a

record is added.

81 | P a g e

You can specify different values such as 10 for starting value and 5 for each addition

with AUTOINCREMENT(10,5).

Again, note that each time we add a new record, we do not need to specify the

Personid value. It is generated automatically.

Oracle

In Oracle, the code is a bit trickier. To create an auto-increment field, you need to

create a sequence of numbers:

CREATE SEQUENCE seq_person

MINVALUE 1

START WITH 1

INCREMENT BY 1

CACHE 10;

This sequence creates a sequence object named “seq_person”, sets the minimum

value to start from (which is 1 in this instance), then specifies the increment by 1. The

cache specifies how many sequence values should be stored in memory for faster

access.

Unlike the previous examples, to enter a new record into the Persons table, you need

to use the nextval function. This function is used to retrieve the next value from the

sequence object that we created.

INSERT INTO Persons (Personid,FirstName,LastName)

VALUES (seq_person.nextval,'Lars','Monsen');

Here, we can see that the Personid column is selected to be assigned the next number

from the sequence object that we created called “seq_person”.

82 | P a g e

SQL Dates

One of the most challenging parts when working with dates is to ensure that the format

of the date you are trying to enter is the same with the format of the date column in the

database.

It is important to note that data that contains only date portions will work as expected

in queries. However, if there is a time portion, things get a bit more complicated.

Date Data types found in MySQL:

• DATE - format YYYY-MM-DD

• DATETIME - format: YYYY-MM-DD HH:MI:SS

• TIMESTAMP - format: YYYY-MM-DD HH:MI:SS

• YEAR - format YYYY or YY

Data types found in SQL Server:

• DATE - format YYYY-MM-DD

• DATETIME - format: YYYY-MM-DD HH:MI:SS

• SMALLDATETIME - format: YYYY-MM-DD HH:MI:SS

• TIMESTAMP - format: a unique number

Keep in mind that the data types are chosen when you are creating a new table in your

database.

Table 57 - Orders table in Dates Example (Source: https://www.w3schools.com/sql/sql_dates.asp)

https://www.w3schools.com/sql/sql_dates.asp

83 | P a g e

We will use the Orders table in our example to select the records with an OrderDate

of “2008-11-11”.

Example:

SELECT *

FROM Orders

WHERE OrderDate='2008-11-11';

The expected result will look something like this:

Table 58 - Result of OrderDate query in Dates Example (Source: https://www.w3schools.com/sql/sql_dates.asp)

Note that two dates can be easily compared when there is no time stamp involved.

Suppose that you have the Orders table, but with a timestamp in the OrderDate

column.

Table 59 - Orders table with timestamp in Dates Example (Source:

https://www.w3schools.com/sql/sql_dates.asp)

Here, if you attempted to use the same query as we used above:

SELECT *

FROM Orders

WHERE OrderDate='2008-11-11';

https://www.w3schools.com/sql/sql_dates.asp
https://www.w3schools.com/sql/sql_dates.asp

84 | P a g e

You would get no result, because the query is not taking into account the time stamp.

It is recommended to not use time stamps unless you absolutely have to.

SQL Views

In SQL, a view is a virtual table of a result-set created from a specific query. A view is

useful when you want to view and present data through a combination of tables.

Syntax:

CREATE VIEW view_name AS

SELECT column1, column2, ...

FROM table_name

WHERE condition;

Note that a view always shows up-to-date data since the database recreates the virtual

table, every time users query it.

Example to query all customers from Brazil:

CREATE VIEW [Brazil Customers] AS

SELECT CustomerName, ContactName

FROM Customers

WHERE Country = 'Brazil';

To query the view:

SELECT * FROM [Brazil Customers];

Another example is to create a view that selects every product in the Products table

with a price that is higher than the average price:

CREATE VIEW [Products Above Average Price] AS

SELECT ProductName, Price

FROM Products

WHERE Price > (SELECT AVG(Price) FROM Products);

85 | P a g e

To query the view above, use the following statement:

SELECT * FROM [Products Above Average Price];

To update a view, use the CREATE OR REPLACE VIEW statement:

CREATE OR REPLACE VIEW view_name AS

SELECT column1, column2, ...

FROM table_name

WHERE condition;

The following example adds the “City” column to the Brazil Customer view that we

created earlier:

CREATE OR REPLACE VIEW [Brazil Customers] AS

SELECT CustomerName, ContactName, City

FROM Customers

WHERE Country = 'Brazil';

To delete a view, use the DROP VIEW statement:

DROP VIEW view_name;

For example, suppose we want to delete the “Brazil customers” view:

DROP VIEW [Brazil Customers];

SQL Data Types

Generally, each column in a table requires a name and a data type.

An SQL developer will need to decide the type of data that will be stored inside each

column when creating a table. The data type is used for SQL to understand the data

that will be contained in each column and also how it will interact with the data.

Please keep in mind that data types might have different names in different databases.

86 | P a g e

Always check the documentation even if the name is the same because other details

might be different like the size.

Data types in MySQL (Version 8.0)

MySQL has three main data types: string, numeric, and date/time.

String Data Types

Table 60 – String Data types (MySQL) (Source: https://www.w3schools.com/sql/sql_datatypes.asp)

https://www.w3schools.com/sql/sql_datatypes.asp

87 | P a g e

Numeric Data Types

Table 61 – Numeric Data types (MySQL) (Source: https://www.w3schools.com/sql/sql_datatypes.asp)

Date/Time Data Types

Table 62 – Date/Time Data types (MySQL) (Source: https://www.w3schools.com/sql/sql_datatypes.asp)

https://www.w3schools.com/sql/sql_datatypes.asp
https://www.w3schools.com/sql/sql_datatypes.asp

88 | P a g e

Data Types in SQL Server

String Data Types

Table 63 – String Data types (SQL Server) (Source: https://www.w3schools.com/sql/sql_datatypes.asp)

Numeric Data Types

Table 64 – Numeric Data types (SQL Server) (Source: https://www.w3schools.com/sql/sql_datatypes.asp)

https://www.w3schools.com/sql/sql_datatypes.asp
https://www.w3schools.com/sql/sql_datatypes.asp

89 | P a g e

Date/Time Data Types

Table 65 – Date/Time Data types (SQL Server) (Source: https://www.w3schools.com/sql/sql_datatypes.asp)

Other Data Types

Table 66 – Other Data types (SQL Server) (Source: https://www.w3schools.com/sql/sql_datatypes.asp)

Data Types in MS Access

Table 67 – Data types in Access (Source: https://www.w3schools.com/sql/sql_datatypes.asp)

https://www.w3schools.com/sql/sql_datatypes.asp
https://www.w3schools.com/sql/sql_datatypes.asp
https://www.w3schools.com/sql/sql_datatypes.asp

90 | P a g e

SQL References

SQL Keywords

Keyword Description

ADD Adds a column in an existing table

ADD CONSTRAINT Adds a constraint after a table is already created

ALL Returns true if all of the subquery values meet the condition

ALTER Adds, deletes, or modifies columns in a table, or changes

the data type of a column in a table

ALTER COLUMN Changes the data type of a column in a table

ALTER TABLE Adds, deletes, or modifies columns in a table

AND Only includes rows where both conditions is true

ANY Returns true if any of the subquery values meet the

condition

AS Renames a column or table with an alias

https://www.w3schools.com/sql/sql_ref_add.asp
https://www.w3schools.com/sql/sql_ref_add_constraint.asp
https://www.w3schools.com/sql/sql_ref_all.asp
https://www.w3schools.com/sql/sql_ref_alter.asp
https://www.w3schools.com/sql/sql_ref_alter_column.asp
https://www.w3schools.com/sql/sql_ref_alter_table.asp
https://www.w3schools.com/sql/sql_ref_and.asp
https://www.w3schools.com/sql/sql_ref_any.asp
https://www.w3schools.com/sql/sql_ref_as.asp

91 | P a g e

ASC Sorts the result set in ascending order

BACKUP DATABASE Creates a backup of an existing database

BETWEEN Selects values within a given range

CASE Creates different outputs based on conditions

CHECK A constraint that limits the value that can be placed in a

column

COLUMN Changes the data type of a column or deletes a column in

a table

CONSTRAINT Adds or deletes a constraint

CREATE Creates a database, index, view, table, or procedure

CREATE DATABASE Creates a new SQL database

CREATE INDEX Creates an index on a table (allows duplicate values)

CREATE OR

REPLACE VIEW

Updates a view

https://www.w3schools.com/sql/sql_ref_asc.asp
https://www.w3schools.com/sql/sql_ref_backup_database.asp
https://www.w3schools.com/sql/sql_ref_between.asp
https://www.w3schools.com/sql/sql_ref_case.asp
https://www.w3schools.com/sql/sql_ref_check.asp
https://www.w3schools.com/sql/sql_ref_column.asp
https://www.w3schools.com/sql/sql_ref_constraint.asp
https://www.w3schools.com/sql/sql_ref_create.asp
https://www.w3schools.com/sql/sql_ref_create_database.asp
https://www.w3schools.com/sql/sql_ref_create_index.asp
https://www.w3schools.com/sql/sql_ref_create_or_replace_view.asp
https://www.w3schools.com/sql/sql_ref_create_or_replace_view.asp

92 | P a g e

CREATE TABLE Creates a new table in the database

CREATE

PROCEDURE

Creates a stored procedure

CREATE UNIQUE

INDEX

Creates a unique index on a table (no duplicate values)

CREATE VIEW Creates a view based on the result set of a SELECT

statement

DATABASE Creates or deletes an SQL database

DEFAULT A constraint that provides a default value for a column

DELETE Deletes rows from a table

DESC Sorts the result set in descending order

DISTINCT Selects only distinct (different) values

DROP Deletes a column, constraint, database, index, table, or

view

DROP COLUMN Deletes a column in a table

https://www.w3schools.com/sql/sql_ref_create_table.asp
https://www.w3schools.com/sql/sql_ref_create_procedure.asp
https://www.w3schools.com/sql/sql_ref_create_procedure.asp
https://www.w3schools.com/sql/sql_ref_create_unique_index.asp
https://www.w3schools.com/sql/sql_ref_create_unique_index.asp
https://www.w3schools.com/sql/sql_ref_create_view.asp
https://www.w3schools.com/sql/sql_ref_database.asp
https://www.w3schools.com/sql/sql_ref_default.asp
https://www.w3schools.com/sql/sql_ref_delete.asp
https://www.w3schools.com/sql/sql_ref_desc.asp
https://www.w3schools.com/sql/sql_ref_distinct.asp
https://www.w3schools.com/sql/sql_ref_drop.asp
https://www.w3schools.com/sql/sql_ref_drop_column.asp

93 | P a g e

DROP CONSTRAINT Deletes a UNIQUE, PRIMARY KEY, FOREIGN KEY, or

CHECK constraint

DROP DATABASE Deletes an existing SQL database

DROP DEFAULT Deletes a DEFAULT constraint

DROP INDEX Deletes an index in a table

DROP TABLE Deletes an existing table in the database

DROP VIEW Deletes a view

EXEC Executes a stored procedure

EXISTS Tests for the existence of any record in a subquery

FOREIGN KEY A constraint that is a key used to link two tables together

FROM Specifies which table to select or delete data from

FULL OUTER JOIN Returns all rows when there is a match in either left table

or right table

https://www.w3schools.com/sql/sql_ref_drop_constraint.asp
https://www.w3schools.com/sql/sql_ref_drop_database.asp
https://www.w3schools.com/sql/sql_ref_drop_default.asp
https://www.w3schools.com/sql/sql_ref_drop_index.asp
https://www.w3schools.com/sql/sql_ref_drop_table.asp
https://www.w3schools.com/sql/sql_ref_drop_view.asp
https://www.w3schools.com/sql/sql_ref_exec.asp
https://www.w3schools.com/sql/sql_ref_exists.asp
https://www.w3schools.com/sql/sql_ref_foreign_key.asp
https://www.w3schools.com/sql/sql_ref_from.asp
https://www.w3schools.com/sql/sql_ref_full_outer_join.asp

94 | P a g e

GROUP BY Groups the result set (used with aggregate functions:

COUNT, MAX, MIN, SUM, AVG)

HAVING Used instead of WHERE with aggregate functions

IN Allows you to specify multiple values in a WHERE clause

INDEX Creates or deletes an index in a table

INNER JOIN Returns rows that have matching values in both tables

INSERT INTO Inserts new rows in a table

INSERT INTO

SELECT

Copies data from one table into another table

IS NULL Tests for empty values

IS NOT NULL Tests for non-empty values

JOIN Joins tables

LEFT JOIN Returns all rows from the left table, and the matching rows

from the right table

https://www.w3schools.com/sql/sql_ref_group_by.asp
https://www.w3schools.com/sql/sql_ref_having.asp
https://www.w3schools.com/sql/sql_ref_in.asp
https://www.w3schools.com/sql/sql_ref_index.asp
https://www.w3schools.com/sql/sql_ref_inner_join.asp
https://www.w3schools.com/sql/sql_ref_insert_into.asp
https://www.w3schools.com/sql/sql_ref_insert_into_select.asp
https://www.w3schools.com/sql/sql_ref_insert_into_select.asp
https://www.w3schools.com/sql/sql_ref_is_null.asp
https://www.w3schools.com/sql/sql_ref_is_not_null.asp
https://www.w3schools.com/sql/sql_ref_join.asp
https://www.w3schools.com/sql/sql_ref_left_join.asp

95 | P a g e

LIKE Searches for a specified pattern in a column

LIMIT Specifies the number of records to return in the result set

NOT Only includes rows where a condition is not true

NOT NULL A constraint that enforces a column to not accept NULL

values

OR Includes rows where either condition is true

ORDER BY Sorts the result set in ascending or descending order

OUTER JOIN Returns all rows when there is a match in either left table

or right table

PRIMARY KEY A constraint that uniquely identifies each record in a

database table

PROCEDURE A stored procedure

RIGHT JOIN Returns all rows from the right table, and the matching rows

from the left table

ROWNUM Specifies the number of records to return in the result set

https://www.w3schools.com/sql/sql_ref_like.asp
https://www.w3schools.com/sql/sql_ref_limit.asp
https://www.w3schools.com/sql/sql_ref_not.asp
https://www.w3schools.com/sql/sql_ref_not_null.asp
https://www.w3schools.com/sql/sql_ref_or.asp
https://www.w3schools.com/sql/sql_ref_order_by.asp
https://www.w3schools.com/sql/sql_ref_outer_join.asp
https://www.w3schools.com/sql/sql_ref_primary_key.asp
https://www.w3schools.com/sql/sql_ref_procedure.asp
https://www.w3schools.com/sql/sql_ref_right_join.asp
https://www.w3schools.com/sql/sql_ref_rownum.asp

96 | P a g e

SELECT Selects data from a database

SELECT DISTINCT Selects only distinct (different) values

SELECT INTO Copies data from one table into a new table

SELECT TOP Specifies the number of records to return in the result set

SET Specifies which columns and values that should be

updated in a table

TABLE Creates a table, or adds, deletes, or modifies columns in a

table, or deletes a table or data inside a table

TOP Specifies the number of records to return in the result set

TRUNCATE TABLE Deletes the data inside a table, but not the table itself

UNION Combines the result set of two or more SELECT

statements (only distinct values)

UNION ALL Combines the result set of two or more SELECT

statements (allows duplicate values)

https://www.w3schools.com/sql/sql_ref_select.asp
https://www.w3schools.com/sql/sql_ref_select_distinct.asp
https://www.w3schools.com/sql/sql_ref_select_into.asp
https://www.w3schools.com/sql/sql_ref_select_top.asp
https://www.w3schools.com/sql/sql_ref_set.asp
https://www.w3schools.com/sql/sql_ref_table.asp
https://www.w3schools.com/sql/sql_ref_top.asp
https://www.w3schools.com/sql/sql_ref_truncate_table.asp
https://www.w3schools.com/sql/sql_ref_union.asp
https://www.w3schools.com/sql/sql_ref_union_all.asp

97 | P a g e

UNIQUE A constraint that ensures that all values in a column are

unique

UPDATE Updates existing rows in a table

VALUES Specifies the values of an INSERT INTO statement

VIEW Creates, updates, or deletes a view

Table 68 – SQL Keywords and Descriptions (Source: https://www.w3schools.com/sql/sql_ref_keywords.asp)

MySQL Functions

For more details and a comprehensive list on specific functions used in MySQL,

learners can refer to this link.

SQL Server Functions

For more details and a comprehensive list on specific functions used in SQL Server,

learners can refer to this link.

MS Access Functions

For more details and a comprehensive list on specific functions used in SQL Server,

learners can refer to this link.

SQL Quick Ref

For a comprehensive list of SQL statements and their corresponding syntax, learners

can refer to this link.

https://www.w3schools.com/sql/sql_ref_unique.asp
https://www.w3schools.com/sql/sql_ref_update.asp
https://www.w3schools.com/sql/sql_ref_values.asp
https://www.w3schools.com/sql/sql_ref_view.asp
https://www.w3schools.com/sql/sql_ref_keywords.asp
https://www.w3schools.com/sql/sql_ref_mysql.asp
https://www.w3schools.com/sql/sql_ref_sqlserver.asp
https://www.w3schools.com/sql/sql_ref_msaccess.asp
https://www.w3schools.com/sql/sql_quickref.asp

98 | P a g e

4.4. SQL Examples

SQL Examples

There is comprehensive list of examples in the W3Schools website that learners can

use to self-study and practice their SQL skills further.

SQL Quiz

For learners that want to assess their knowledge and skills on SQL, please refer to

one of the following websites:

• W3Schools

• Tutorialspoint

SQL Exercises

For a comprehensive list of exercises, learners can use the W3Schools website to

practice their SQL skills.

https://www.w3schools.com/sql/sql_examples.asp
https://www.w3schools.com/sql/sql_quiz.asp
https://www.tutorialspoint.com/sql/sql_online_quiz.htm
https://www.w3schools.com/sql/sql_exercises.asp

