Co-funded by the

Erasmus+ Programme

of the European Union
Co-funded by the
Erasmus+ Programme

of the European Unior

3.1.:

Code4SP Training

Material Package

ey

WP3: . -

Code4SP Training Materials —

SQL

Prepared by:
CITIZENS
.é‘ IN POWER

m CITIZENS —— G A x
G sngl AQ. IN POWER @]nnwdion DR ZAU i 4M ‘a. 9':0..,
The European Commission's suppart far the production of this publication does not constitute an endorsement of the

coments, which reflect the views only of the authors, and the Commssion cannat be held responsible for any use which may
be made af the infarmation contained thersin,

Co-funded by the
Erasmus+ Programme
of the European Union

Project Information

Project Acronym: Code4SP

Project Title: Coding for Social Promotion

Project Reference: 621417-EPP-1-2020-1-PT-EPPKA3-IPI-SOC-IN
Project website: www.code4sp.eu

Authoring Partner: C.I.P. Citizens in Power

Document Version: 2

Date of Preparation: 11/03/2022

Document History
Date Version Author Description
11/03/2022 1 CIP Draft
22/03/2022 2 CEPROF Revision
2|Page
o u l e o G, 4 :
:) 4 -
s E O N POWER Aol -)ui AR @GP
The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannat be held responsible for any use which may

be made al the information contained therain

http://www.code4sp.eu/

Co-fundad by the
Erasmus+ Programme
of the European Union

Table of Contents

B 01 (o3 a1 {o] 12 T= L4 o o S 4
Y@ I 2 - 1) (oF PP PPPPRRON 6
SQL DAADASEoeeiiiiiiiiiiiiiee e e e e e e e e e e et aaaaeaeaaaas 59
SQL REIEIENCES ...ttt e e e e e e e e e e e e e e e st e e e e aaeeeeanababaaaeeeaeeeaaas 90
SOQL EXAMPIES ...t 98

3|Page

I CITIZENS Cortter B So0w z
sllg o IN POWER Innovation . __." _) 4@7@" G

The European Commission's support far the production of this publication does not constitute an endorsement of the
coments, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may
be made of the information contained therain

Co-fundad by the
Erasmus+ Programme
of the European Union

Topic Information

Topic:
4. SQL

Prerequisites:
Basic computer literacy, basic software installed, and basic knowledge of working with
files.

Workload:
10 hours

Description:

In this topic, we cover the basics of SQL to get learners acquainted with the
programming world and encourage them to gain more expertise on SQL. We explain
the attributes, syntax, and other relevant terms that learners may have heard or be
familiar with and how these fit into the programming language. We provide a detailed
account of the logic and syntax used in SQL, its structure and other basic and essential

functions.

Learning outcomes:

e Recognise the concept and usage of Structured Query Language (SQL) in
Relational Database Management Systems (RDBMS)

e Formulate basic syntax of SQL queries

e Use SQL to access, manage, and manipulate RDBMS

Material required:
e Computer or laptop

e Internet connection

4|Page

l:LJ' pean Commisson's support far the production of this pubdication does not constitute an endorse
which reflect the wews only of the authors, and th

MMESSION Cannot be h |,h,. responsible for any use wl

be made af the infarmation contained therain

‘7& sugl G IN POWER & |r|m,,,~(on .2—31114&&07% 2oty Ly

ih
ch may

Co-fundad by the
Erasmus+ Programme
of the European Union

e Online text editor (https://www.w3schools.com/sgl/default.asp)

e Online SQL compiler (https://www.mycompiler.io/new/sql)

Lesson Scenario:
The total time dedicated to this topic is 10 hours, and it is up to the judgement of the
trainer/coach to decide how much time will be spent on each subtopic. We suggest
using the PPT training presentations explicitly created for this topic to ease the
teaching process and increase time efficiency. These presentations encompass the
following:

e Progressive development of subtopics and core concepts to retain, and

¢ Recommended Exercises.
Depending on the trainer's/coach’s preferences, the progressive development of the
presentations allows the completion of the SQL session within the stipulated time, i.e.,
10 hours. The presentations can also be made available to learners for self-studying.

Subtopics:
e SQL Basics
e SQL Databases
e SQL References
e SQL Examples

Additional resources:

e \W3Schools - Guide for every SQL keyword and function, and examples for
each of them
e Tutorialspoint — Another detailed guide on SQL keywords and functions, and

various examples for each them

5|Page

- sual 5_) wmwm @. Innovation -Z—_)4“4M% ==

Jropean Commissan's support far the production of this p

pan does ne titute an endorsement of
CAannor be h n,h,. 1espo:

be made af the infarmation contained therain

nsible for any use which may

ents, which reflect the wews only of the authors, and the Cor

https://www.mycompiler.io/new/sql
https://www.w3schools.com/sql/default.asp
https://www.w3schools.com/
https://www.tutorialspoint.com/sql/index.htm

Co-fundad by the
Erasmus+ Programme
of the European Union

SQL Basics
What is SQL?

SQL stands for Structured Query Language. SQL is a standard programming
language specifically designed for storing, retrieving, managing or manipulating data
found within a Relational Database Management System (RDBMS). A relational
database is a collection of data items with pre-defined relationships between them.

These items are organised as a set of tables with columns and rows.
SQL became an ISO standard in 1987.

SQL is the most widely-implemented database language supported by popular
relational database systems, like MySQL, SQL Server, and Oracle. SQL was initially
developed at IBM in the early 1970s. Originally, it was called SEQUEL (Structured
English Query Language) and it was later changed to SQL (pronounced as S-Q-L).

Applications of SQL
SQL is one of the most widely used query languages for databases. Some of its many
applications are:

e Allowing users to access data in the relational database management systems,
e Allowing users to describe the data,
e Allowing users to define the data in a database and manipulate that data.

SQL Syntax
SQL statements are straightforward, like plain English, but with a specific syntax.

An SQL statement is composed of a sequence of keywords, identifiers etc., terminated

by a semicolon (;).

Example:
6|Page

- Sllﬂl Qu; mnowm@ Innovation -z—:)“"4mw

e Edropean Commisson's support far the product ubdicatian does not constitute an endorsement of the

ts, which reflect the views only of the authors, and the Commession cannot be held responsible for ar y use which may

be made al the information contained theran

Co-fundad by the
Erasmus+ Programme
of the European Union

SELECT emp_name, hire_date, salary FROM employees WHERE salary > 5000;

For better readability, you can also write the same statement, as follows:

SELECT emp_name, hire_date, salary
FROM employees
WHERE salary > 5000;

Use semicolon at the end of an SQL statement — it terminates the statement or
submits the information to the database server.

Case Sensitivity in SQL
Consider another SQL statement that retrieves records from the Employees table:

SELECT emp_name, hire_date, salary FROM employees;

The same statement can also be written as follows:

select emp_name, hire_date, salary from employees;

SQL keywords are case-insensitive, which means SELECT is the same as select.

However, the database and table names may be case-sensitive depending on the
operating system. In general, Unix or Linux platforms are case-sensitive, whereas

Windows platforms aren't.
SQL Select

The SELECT statement selects or retrieves data from one or more tables. You can
use this statement to retrieve all the rows from a table in one go or retrieve only those
rows that satisfy a specific condition or a combination of conditions.

Suppose we have a table named Employees in our database that contains the

following records:

7|Page

-‘ suel 1} WPOWER@, Im l‘,(,.z :')“‘/44ﬂ07w @R

The European Commission's support for the production of this publication does not constitute an endorsement of the

ents, which reflect the wews only of the authors, and th

not be held responsible for any use which may
be made ol the information contained theran

Co-funded by the
Erasmus+ Programme
of the European Union

| emp_id| emp_name| hire_date| salary| dept_id|

+
+
+
+
+
+

| 1|Ethan Hunt |2001-05-01| 5000 | 4

| 2| Tony Montana | 2002-07-15| 6500| 1|

| 3| Sarah Connor | 2005-10-18 | 8000 | 5]

| 4|Rick Deckard | 2007-01-03| 7200| 3|

| 5| Martin Blank | 2008-06-24 | 5600| NULL |

Select All from Table
The following statement will return all the rows from the employees’ table.
>> SELECT * FROM employees;

Select Specific Columns from Table
If you don't require all the data, you can select specific columns, like this:

SELECT emp_id, emp_name, hire_date, salary
FROM employees;

8|Page
i ZENS S ' {
| o Q IN POWER Innovation L) A ko v
The European Commission's support far the production of this publication does not constitute an endorsement of the

coments, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made af the infarmation contained therain

Co-fundad by the
Erasmus+ Programme
of the European Union

After executing the above statement, you will get an output like this:

| emp_id| emp_name| hire_date| salary|

+ + + + +
T T T T T

| 1| Ethan Hunt |1995-10-30| 5000 |

2	Tony Montana	1990-07-15	6500
3	Sarah Connor	2011-04-13	5600
4	Rick Deckard	2005-10-18	7200

| 5| Martin Blank | 1996-05-24 | 8000 |

JL + + + +
T T T T T

SQL Select Distinct]
The SELECT DISTINCT statement omits duplicated values when used in a query.

You can find duplicated values inside a table, but sometimes you want to see the

“unique” values.

Syntax:
SELECT DISTINCT columnl, column2, ...
FROM table_name;

In the following examples, we will be using the Customers table that contains data

about our customers.

9|Page

= 806l &5 s @ i EIZAUG) 4 Ao 8§

The European Commission's support far the production of this publication does not constitute an endorseme

nt of the
comtents, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made al the information contained thersin

Co-funded by the
Erasmus+ Programme
of the European Union

Lustovme L0 Camtirmes roams Lontacthane Atarvas Oy Pastahude Camarrry

M) P vty Waiin Mrms heve B0 X7 e~ 0 ey

avris e Tegars arvrrvs Mo Matatene p—— w1y e

B et sertted YoeTr B g e s ey € = » = tmetr

Table 1 - Customers table in SELECT DISTINCT example (Source:
https://www.w3schools.com/sgl/sql distinct.asp)

To select all values from the Country column in the Customers table, you would use
the following statement:
SELECT Country FROM Customers;

However, this statement will include duplicate values.

If you want to omit the duplicate values from your query, use SELECT DISTINCT:
SELECT DISTINCT Country FROM Customers;

Suppose you wanted to list the number of different customer countries; you would use
the following statement:
SELECT COUNT(DISTINCT Country) FROM Customers;

Please note that this example will not work in Firefox since COUNT(DISTINCT
column_name) is not supported in MS Access.

To get the equivalent result in Access, use this:
>> SELECT Count(*) AS DistinctCountries
FROM (SELECT DISTINCT Country FROM Customers);

SQL Where

Previously, we have learnt how to fetch all the records from a table or columns from a

table.
10|Page
=808l &5 s @ ZAUG) /
; ENDS) ot for Sacu a LY 44)
Q INPOWER &5 Innovation Py AR ez
The European Commission's support far the production of this publication does not constitute an endors I of the
comtents, which reflect the wews only of the authors, and th mmssion cannot be held responsible for any use which may

be made af the infarmation contained therain

https://www.w3schools.com/sql/sql_distinct.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

However, in real-world cases, we generally need to select, update or delete only those

records which fulfil certain conditions, like users who belong to a particular age group,
country, etc.

The WHERE clause is used with the SELECT, UPDATE, and DELETE.

The WHERE clause is used with the SELECT statement to extract only those records
that fulfil specified conditions.

The basic syntax is as follows:
SELECT column_list

FROM table_name

WHERE condition;

Now, let's check out some examples that demonstrate how it works.

Suppose we have a table called Employees in our database with the following records:
| emp_id| emp_name| hire_date| salary| dept_id|

+ + + + + +

| 1|Ethan Hunt |2001-05-01| 5000| 4|

| 2| Tony Montana | 2002-07-15 | 6500 | 1]
| 3| Sarah Connor | 2005-10-18 | 8000 | 5]
| 4] Rick Deckard | 2007-01-03 | 7200 | 3|

JL + + + +
T T T T T

+

The following SQL statement will return all employees from the Employees’ table
whose salary is greater than 7000:
SELECT * FROM employees WHERE salary > 7000;

The WHERE clause simply filters out the unwanted data.

11 |Page

p‘ sual t) wr’owm@; Innovatic “.Z—_)“,;44¢607G\é

he European Commisson's support [I:u; oduction of this publication does not constitute an endorsement (
which reflect the wews only of the authors, and the

ssion cannot be held responsible for any use which may
be made af the infarmation contained therain

https://www.tutorialrepublic.com/sql-tutorial/sql-select-statement.php
https://www.tutorialrepublic.com/sql-tutorial/sql-update-statement.php
https://www.tutorialrepublic.com/sql-tutorial/sql-delete-statement.php

Co-fundad by the
Erasmus+ Programme
of the European Union

Another example would be to select all employees with department id =1:
SELECT * FROM employees WHERE dept_id=1;

The following table provides the list of operators that can be used with the WHERE

clause:

Ogwestor o g -
tsm
e
el eadl
. -es -

arrerm e i Rl

D o Saihe Sumy aibet A & o

Table 2 -Table of Operators used in WHERE clause (Source: https://www.w3schools.com/sgl/sgl_where.asp)

SQL And, Or, Not

The WHERE clause can be combined with AND, OR, and NOT operators.

The AND and OR operators are used to filter records based on more than one

condition.

The AND operator displays a record if all the conditions that use AND are TRUE.
AND Syntax:

SELECT columnl, column2, ...

FROM table_name

WHERE condition1 AND condition2 AND condition3 ...;

Example: Select all fields from Customers table where country is “Germany” AND City

is “Berlin”.

12|Page
= 18l) e G4
! ZENS 3 4] v E A - :
Q IN POWER lnnumt cn L) Ai ffaran TP
The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannat be held responsible for any use which may

be made al the information contained thersin

https://www.w3schools.com/sql/sql_where.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

SELECT * FROM Customers
WHERE Country='"Germany' AND City="Berlin’;

The OR operator displays a record if any of the conditions that use OR are TRUE.
OR Syntax:

SELECT columnl, column2, ...

FROM table_name

WHERE condition1 OR condition2 OR condition3 ...;

Example 1: Select all fields from Customers table where city is “Berlin” or “Miinchen”
SELECT * FROM Customers.
WHERE City="Berlin' OR City="Minchen’;

Example 2: Select all fields from Customers table where country is “Germany” or
“Spain”.

SELECT * FROM Customers

WHERE Country="Germany' OR Country="Spain’;

The NOT operator displays a record if the condition(s) is NOT TRUE.
NOT Syntax:

SELECT columnl, column2, ...

FROM table_name

WHERE NOT condition;

Example: Select all fields from Customers table where country is NOT “Germany”.
SELECT * FROM Customers
WHERE NOT Country="Germany';

13|Page

"A sugl {3 N powm @_. [rmu.‘a{ on . Z *)111/44&07% -

Iu_‘L_ﬂ pean Commisson's support far the production of this pubdication does not sttute an endorse

comtents, which reflect the wews only of the authors, and the Commessian cans JH !,’l,ll,.h’;.,l\ll sible for an y use which may
be made ol 'Iv-f m'w mation contained therain

Co-fundad by the
Erasmus+ Programme
of the European Union

Combining AND, OR and NOT

Example 1: Select all rows from the Customers table where country is Germany and
city must be either Berlin or Miinchen.

SELECT * FROM Customers

WHERE Country="Germany' AND (City='Berlin' OR City="Miinchen');

Example 2: Select all rows from the Customers table where country is NOT Germany
and NOT USA.

SELECT * FROM Customers

WHERE NOT Country="Germany' AND NOT Country="USA’,

SQL Order By

The ORDER BY keyword sorts the result-set in ascending or descending order.The
ORDER BY keyword sorts the records in ascending order by default. To sort the
records in descending order, use the DESC keyword.

ORDER BY Syntax:

SELECT columnl, column2, ...

FROM table_name

ORDER BY columnl, column2, ... ASC|DESC;

In the following examples, we will use the Customers table shown below:

Cantromeri Camtarmen e [T Asitirme Oy Peatan ate Conenitry
Avadr Funersae wara Avtes Onere dar & ot 1200 R
‘.
Arrrre Werers Twzses T T p— Meleterys 1113 Minkes O F oy Mewes
v
Mgt matso s Uivistes Sargtand Bargirasages 4 Land %o 13 Saerms

Table 3 - Customers Table in ORDER BY example (Source:_https://www.w3schools.com/sgl/sgl orderby.asp)

14 |Page

= 806l &5 s @ i EIZAUG) 4 Ao 8§

The European Commission's support far the production of this publication does not constitute an endorse

ent of the
comtents, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made al the information contained thersin

https://www.w3schools.com/sql/sql_orderby.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

Example 1: Selects all customers from the Customers table and sorts them by the

Country column
SELECT * FROM Customers
ORDER BY Country;

Example 2: Selects all customers from the same table and sorts them in descending
order by the Country column

SELECT * FROM Customers

ORDER BY Country DESC;

Example 3: Selects all customers from the same table and sorts them by Country and
Customer Name.

SELECT * FROM Customers

ORDER BY Country, CustomerName;

Here, the order is initially sorted by Country. However, if there are some rows that
have the same country, then they are sorted by Customer Name.

Example 4: Selects all customers from the same table and sorts them in ascending
order by Country and descending order by Customer Name

SELECT * FROM Customers

ORDER BY Country ASC, CustomerName DESC;

SQL Insert Into
The INSERT INTO statement inserts new records in a table.

For your code to run correctly, specify both the column names and the values that will
be inserted.

Syntax:

INSERT INTO table_name (columnl, column2, columns, ...)
15|Page

p‘ sual t) wr’owm@; Innovatic “.Z—_)“,;44¢607G\é

van does not titute an endorsement of

annorbe h n,h,. 1espo:

pean Commisson's support far the production of this publics

WS, which reflect the wews only of the authors, and the Come nsible for any use which may

be made af the infarmation contained therain

Co-fundad by the
Erasmus+ Programme
of the European Union

VALUES (valuel, value2, values, ...);

CustomeriD CustomerName ContactName Address City PostalCode Country
B89 Whate Clover Karl Jablonski 305 - 14th Ave. S, Seattle 968124 usa
Markets Suite 38
oD Wilman Kala Matny Keskuskatu 45 Helsinki 21240 Finland
Karttunen
91 Wolsk Zbyszex ul, Filtrows 68 Watlsy 01-012 Polang

Table 5 - INSERT INTO Example (Source:;_https://www.w3schools.com/sgl/sgl_insert.asp)

For example, to add a new record in your “Customers” table, use the following:

INSERT INTO Customers (CustomerName, ContactName, Address, City,
PostalCode, Country)
VALUES (‘Cardinal’, 'Tom B. Erichsen’, 'Skagen 21', 'Stavanger’, '4006', 'Norway");

SQL Null Values

A field with a NULL value is a field with no value. If a field in a table is optional, it is
possible to insert a new record or update a record without adding a value to this field.
Then, the field will be saved with a NULL value.

Note: A NULL value is different from a zero value or a field that contains spaces. A
field with a NULL value has been left blank during record creation!

Testing for NULL Values
Itis impossible to test for NULL values with comparison operators, such as =, <, or <>.
Instead, we will have to use the IS NULL and IS NOT NULL operators.

IS NULL Syntax:
SELECT column_names
FROM table_name

16|Page
e % l CITIZENS . : ;
L s'la O IN "O‘IN’“* _'” Irmumt on -z _)‘1 1114m¥3 b @GP

The European Commission's support for the production of this publication does not constitute an enda ent of the

comntents, which reflect the wews onl oS, and the Commession cannot be lnvh_, responsible for any use which may

be made al the information contained thersin

Co-funded by the
Erasmus+ Programme
of the European Union

WHERE column_name IS NULL;

IS NOT NULL Syntax:

SELECT column_names

FROM table_name

WHERE column_name IS NOT NULL;

The following examples use the table below:

st Fwstivmnr i Mane ot Aohires oy Pstall e Farentry
D - Ay Oheir W0 ¥ bt) ey
101 Pyt ¢ et [' Mot 94 1 Lo . 311 s ' ' -
D e) I B Madasnree 1100 Mawer OF 10 e
L T hrmtre bergpare e garrcape ¥ anl boam e

Table 6 - Customers Table in NULL Values Example (Source:
https://www.w3schools.com/sgl/sgl null values.asp)

Example of IS NULL

Selects all customers with Null values (i.e. empty values) in the Address column:
SELECT CustomerName, ContactName, Address

FROM Customers

WHERE Address IS NULL;

To look for Null values, always use IS NULL.

Example of IS NULL

Selects all customers with NOT Null values (i.e. non-empty values) in the Address
column:

SELECT CustomerName, ContactName, Address

FROM Customers

WHERE Address IS NOT NULL;

17|Page
™ "OWER lnnumhcn _)‘ M ffara Sesbary
The European Commission's support far the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannat be held responsible for any use which may

be made al the information contained therain

Co-funded by the
Erasmus+ Programme

code4$p of the European Union

SQL Update
The UPDATE statement modifies the existing records of a table.

UPDATE table_name
SET columnl = valuel, column2 = value?, ...
WHERE condition;

Be careful when updating records in a table! Notice the WHERE clause in the UPDATE
statement. The WHERE clause specifies which record(s) should be updated.

If you omit the WHERE clause, all records in the table will be updated!

Example

C i <« ~ Comta 1 Bame Addiras Cny PovialCade Coumtry

’ Afrets Fune b L N Cers B § Barte 130 -y
Ane Manda A Tr e Aolie e b Mo “ Mees o
e elatoe § seattucde 3223 OF
[P

) Azira s rwe Mtaca Mizese Metedeaa J11) Moasns 2 Messa
Isouere or

4 - - - " na » . wA -

s Do ghr ™y waltd e] [Luded e n e

s glad

Table 7 - Customers table in UPDATE example (Source: _https://www.w3schools.com/sgl/sgl update.asp)

To update CustomerID=1 from the “Customers” table in the sample database, use the
following:

UPDATE Customers

SET ContactName = 'Alfred Schmidt', City="Frankfurt'

WHERE CustomerID = 1;

18|Page

=808l & s @ i EIZAUG) 4 A= s

aoaserey

The European Commission's support far the production of this publication does not constitute an endorsement of the
coments, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made af the infarmation contained therain

Co-funded by the
</> Erasmus+ Programme
codedsp of the European Union

And the “Customers” table will now look like this:

C D C riame ComtaciMame Address City PostalCode Country

| Affreds Futterioste A¥red SOwmedt Obee St 57 Frankdurt 12209 Germany

2 Ana Truplio Ana Truplic Méxco oS0t Mexico
Evparedados y D.F.
helados

3 Antoned Moreno Antorwo Morero Mataderos 2312 Menco 05023 Mewxco
Taguers O.F

3 Around the Horn Thomas Hardy 120 Hanover Sg London Wal 1De U

- Berglunds snabbkie hrsties Berguvsvagen 5 Luled 5955 12 Sweden

Bergiurd

Table 8 - Customers table in UPDATE example (Source: _https://www.w3schools.com/sql/sgl_update.asp)

The WHERE clause determines how many records will be updated.

The following SQL statement will update the ContactName to "Juan" for all records
where the country is "Mexico" in the Customers table:

UPDATE Customers
SET ContactName='Juan'
WHERE Country="Mexico';

SQL Delete

The DELETE statement deletes existing records in a table.
DELETE FROM table_name WHERE condition;

Keep in mind that you need to be careful when deleting records in a table! Notice the
WHERE clause in the DELETE statement. The WHERE clause specifies which
record(s) should be deleted.

19|Page
=800l ¢ s @ s BJZAUG) 4 A ¥ o

ent of the

any use which may

The European Commission's support far the production of this publication does not constitute an endors
comtents, which reflect the wews only of the authors, and the Commission cannot be held responsible for
be made af the information contained therain

Co-funded by the
Erasmus+ Programme
of the European Union

If you omit the WHERE clause, all records in the table will be deleted!

Example:
DELETE FROM Customers WHERE CustomerName="'Alfreds Futterkiste";

Delete All Records

It is possible to delete all rows in a table without deleting the table itself. This means
that the table’s structure, attributes, and indexes will stay intact:
DELETE FROM table_name;

SQL Select Top

The SELECT TOP clause is used to specify the number of records that will be

returned.

The SELECT TOP clause is useful on large tables with thousands of records.
However, returning a large number of records can impact performance.

Note that not all database systems support the SELECT TOP clause. MySQL supports
the LIMIT clause to select a limited number of records, while Oracle uses FETCH
FIRST n ROWS ONLY and ROWNUM.

SQL Server/MS Access Syntax:

SELECT TOP number|percent column_name(s)
FROM table_name

WHERE condition;

MySQL Syntax:
SELECT column_name(s)
FROM table_name

WHERE condition
20|Page

29 G 5 @ - [IZAVG) ok

he European Commisson's support for the production of this publication does not constitute an endorsement of

SION Cannot be h n,h, responsible for an y use which may

which reflect the wews only of the authors, and the Come

be made af the infarmation contained therain

Co-funded by the
</> Erasmus+ Programme

codedsp of the European Union

LIMIT number;

Oracle 12 Syntax:

SELECT column_name(s)

FROM table_name

ORDER BY column_name(s)

FETCH FIRST number ROWS ONLY;

Older Oracle Syntax:

SELECT column_name(s)
FROM table_name

WHERE ROWNUM <= number;

Older Oracle Syntax with ORDER BY:

SELECT *

FROM (SELECT column_name(s) FROM table_name ORDER BY column_name(s))
WHERE ROWNUM <= number;

We will use the “Customers” table shown below in the following examples.

Camtramvar iy Cunrerm— ety Comttm e Aserene < Pantabode Cmarery
[e v AN "aa N Yot W AP ~ 11108 Corrrary
L Two et ¢) s e Sedn e @ TornTiaas 22 M ’ w—
e) N poves s Uk i weuc
ive = Ve oy 11 e i srar el i »
o gt SRy Oearzin bew ass b s g 4 [ean sasses

Table 9 - Customers table in SELECT TOP examples (Source: _https://www.w3schools.com/sgl/sgl top.asp)

r‘ sugl CITIZENS A Covitat for S0
- IN POWER g Innovatio

The European Commission's support far the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commssion cannat be held responsible for any use which may
be made af the infarmation contained therain

https://www.w3schools.com/sql/sql_top.asp

Co-funded by the
Erasmus+ Programme
of the European Union

To select the first three records from the Customers table in SQL Server/MS Access,

Examples of TOP, LIMIT and FETCH FIRST

use the following:
SELECT TOP 3 * FROM Customers;

To execute a query with the same result as above in MySQL, use the following
statement:

SELECT * FROM Customers

LIMIT 3;

To execute a query with the same result as the two above in Oracle:
SELECT * FROM Customers
FETCH FIRST 3 ROWS ONLY;

Examples of TOP PERCENT

To select the first 50% of records found in the Customers table, execute the following
statement in SQL Server/MS Access:
SELECT TOP 50 PERCENT * FROM Customers;

Its equivalent in Oracle is the following:
SELECT * FROM Customers
FETCH FIRST 50 PERCENT ROWS ONLY;

Examples of ADD a WHERE Clause

In the following example, we are selecting the first three records from the Customers
table, where the Country is “Germany” for SQL Server/MS Access:
>> SELECT TOP 3 * FROM Customers

WHERE Country="Germany';

22|Page

p‘ SIIEI {3 IN Powm @. [r” oV .~t on .2—3)11445%7% el

e European Commisson's support far the production of this publication does not constitute an endorsemer
which reflect the wews only of the authors, and the Commession cannot t ‘,h,h,.hu.‘,v‘_n sible for any use which may

be made ol !Iw»; .'»f'vv"'dlu:.'-'u Jntained theran

Co-funded by the
Erasmus+ Programme
of the European Union

Its equivalent in MySQL:
SELECT * FROM Customers
WHERE Country="Germany'
LIMIT 3;

Its equivalent in Oracle:
SELECT * FROM Customers
WHERE Country="Germany'
FETCH FIRST 3 ROWS ONLY;

SQL Min and Max

The MIN() function returns the smallest values from selected columns.

MIN() Syntax

SELECT MIN(column_name)
FROM table_name

WHERE condition;

The MAX() function returns the largest value from selected columns.

MAX() Syntax

SELECT MAX(column_name)
FROM table_name

WHERE condition;

In the following examples, we will use the Products table shown below:

Produlo Frodbactrane Supptherils Catmgory 1l n Price
) Cram ' ' 10 trmoe = 20 suge w
1 -
A - ‘ 1 " SN TV ferthos 1
ace
Yol Are - " ey '

Table 10 - Products Table in Min and Max Examples (Source:
https://www.w3schools.com/sgl/sql_min_max.asp)

23|Page
) ZENS \ T { 2
' Q IN POWER Innovation L) A4 ffaran - @
The European Commission's support far the production of this publication does not constitute an endorsement of the
coments, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may

be made al the information contained thersin

Co-fundad by the
Erasmus+ Programme
of the European Union

Example 1: Finds the price of the cheapest product
SELECT MIN(Price) AS SmallestPrice
FROM Products;

Example 2: Finds the price of the most expensive product
SELECT MAX(Price) AS LargestPrice
FROM Products;

SQL Count, Avg, Sum

The COUNT() function returns the number of rows that match a specified criterion.

COUNT() Syntax

SELECT COUNT/(column_name)
FROM table_name

WHERE condition;

The AVG() function returns the average value of a numeric column.

AVG() Syntax

SELECT AVG(column_name)
FROM table_name

WHERE condition;

The SUM() function returns the total sum of a numeric column.

SUM() Syntax

SELECT SUM(column_name)
FROM table_name

WHERE condition;

24|Page

= 8l &5 e @ i EYZAUG) 4 4icn¥=. . »

The European Commission's support for the production of this publication does not constitute an endorsement of the

comtents, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made al the information contained thersin

Co-funded by the
</> Erasmus+ Programme
codedsp of the European Union

We will use the Products table in the following examples below.

raanin Vit s b2 Catmgury 40 [wricn
A Cune ') A Ssaew 20 tagn "
v . g
Avem! by I 2 L3 NN o et n
' o UEATY (Ao ST "
. One? 035378 aommss 10 3 2 Azam =

Table 11 - Products table in Count, Avg, Sum Examples (Source:

https://www.w3schools.com/sal/sgl_count_avg_sum.asp)

Example of COUNT()

Execute a query to find the number of products:
SELECT COUNT(ProductID)

FROM Products;

Example of AVG()

Execute a query to find the average price of all products:
SELECT AVG(Price)

FROM Products;

Owter Dt 2RI ey vt 10 Ty
1. i
T
-
. ' .

Table 12 - OrdersDetails table in Count, Avg, Sum Examples (Source:
https://www.w3schools.com/sql/sgl_count_avg sum.asp)

In the following example, we will use the OrdersDetails table, shown above, to find the
sum of “Quantity”:

SELECT SUM(Quantity)

FROM OrderDetails;

25|Page

ITIZENS Corvtar o So0s z
snal O iN POWER I'nnomhc" E) /4M @-unn @

The European Cammission's support for the production of this publication does not constitute an endorsement of the
comtents, which reflect the views only of the authors, and the Commission cannat be held responsible for any use which may
be made af the information contained therein

https://www.w3schools.com/sql/sql_count_avg_sum.asp

Co-funded by the
</> Erasmus+ Programme
codedsp of the European Union

SQL Like

The LIKE operator is used in a WHERE clause to search for a specified pattern in a

column.

LIKE Syntax

SELECT columnl, column2, ...
FROM table_name

WHERE column LIKE pattern;

Here are some examples showing different LIKE operators with '%' and '_' wildcards:

LIKE Operator Description

WHERE CustomerName LIKE 3%’ Finds any values that start with "3"

WHERE CustomerName LIKE "Y' Finds any values that end with "a”
WHERE CustomerNeme LIKE Finds any values that have “or” in any position
“Soorss’

WHERE CustomerRame LIKE *_r'%' finds any values that have “r" i the second position

WHERE CustomerName LIKE ‘a_%' Finds any values that start with "a” and are at beast 2 characters in
fength

WHERE CustomerName LIKE "a__%" Finds any values that start with “a” and are at least J characters in
langth

WHERE ComactName LIKE 'a%0’ Finds any values that start with “a" and ends with “o*

Table 13 - LIKE operators (Source: https://www.w3schools.com/sqgl/sql_like.asp)

We will see some examples that will be using the Customers table shown below.

Camtrmer 10 st e Comrt P derens Oy Pamtabi nte Crsmamey

' AR PR - Ay e Wy - e -t
M U PR et y beat s igmn N o) — " -

’ Sremres PuTErn wgmrts erzrvE Warere wmatws JI4d — i e
wrrare e e e -t e s——— -

. o ey T M gend) Lo - Leeree

Table 14 - Customers table in LIKE examples (Source: https://www.w3schools.com/sql/sql like.asp)

26|Page

= 308l & 5ilss @ i BN ZAUG) 4 i o s

The European Cammission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the information contained therain

https://www.w3schools.com/sql/sql_like.asp
https://www.w3schools.com/sql/sql_like.asp

Co-funded by the
Erasmus+ Programme
of the European Union

Example 1: Selects all customers with a Customer Name that starts with ‘a’
SELECT * FROM Customers
WHERE CustomerName LIKE 'a%';

Example 2: Selects all Customer names ending with ‘a’
SELECT * FROM Customers
WHERE CustomerName LIKE '%a’;

Example 3: Selects all Customer names that contain ‘or’ in their name in any position.
SELECT * FROM Customers
WHERE CustomerName LIKE '%0r%';

Example 4: Selects all Customer names that contain ‘r’ in the second position.
SELECT * FROM Customers
WHERE CustomerName LIKE '_r%?;

Example 5: Selects all Customer names that begin with ‘a’ and have at least three
characters in length.

SELECT * FROM Customers

WHERE CustomerName LIKE 'a__ %

Example 6: Selects all Customer names that begin with ‘a’ and end with ‘0’
SELECT * FROM Customers
WHERE CustomerName LIKE 'a%o0';

Example 7: Selects all Customer names that do not begin with ‘a’
SELECT * FROM Customers
WHERE CustomerName LIKE 'a%";

27|Page

p‘ SIIEI {3 IN Powm @. [r” oV .~t on .2—3)11445%7% el

e European Commisson's support far the production of this publication does not constitute an endorsemer
which reflect the wews only of the authors, and the Commession cannot t ‘,h,h,.hu.‘,v‘_n sible for any use which may

be made ol !Iw»; .'»f'vv"'dlu:.'-'u Jntained theran

Co-funded by the
Erasmus+ Programme
of the European Union

</>

codedsp

SQL Wildcards

A wildcard character substitutes one or more characters in a string. It is used with the
LIKE operator.

The LIKE operator is also used in a WHERE clause to search for a specified pattern
in a column, as we have seen in the previous subsection.

Wildcards in MS Access

vt Doscriphion Cramphe

L e R U R T T WS Bt M, s, s atul e

Brs e 8 g e L

n Bode wmsrmns iy 400g® Cha1ennl mB1i0) (T b dihare Ponad wuke ol et bal. bk et fel
PALPRARIE Bevy LI OCLEY fed 18 The beiw bety POIE Toits ol el bot Indt vl Wt

Balsaammie MTy S01Gw LROIM1ET WIRLIL 1T Sj TN 0 SRR P e e e

. DAL EIOTY My BEAIE CUE T A o N QUM JUS 225 N AN A JAN BPR. AN ad P8

Table 15 — Wildcards in Access (Source: https://www.w3schools.com/sql/sql_wildcards.asp)

Wildcards in SQL Server

Gow rigenee

forr v e o — e

I

SO TEET 04y S TEE @WE T TR
ST AT S e P

e 01s Wpe A W Sw A Pt e

teea.
P v e sema Mta e e
. TR A
SraP e et tem taz = e
e S S e e e b

Co AR b ont ond 100

Table 16 — Wildcards in SQL Server (Source: https://www.w3schools.com/sql/sgl_wildcards.asp)

Wildcards can be used in combination; look at some examples at the table below:

LINE Operites D

WA I T | e PR Mty shhy T SIS 1) W

WHARE Cammrrerioare LIKE oo Iren Ty sthan TeE wreh wit 8

IR Caszrverhors AP ‘s ISR sty sdhay Pl baws 51T 0 e preben

WHERE Dadireerimie LIE % VAR Ay R N Te® T) T 00T Few i

WA aTIre e I S~ T vy et T TS W el s d e e ey o gl

WL Cumuctttans LN ‘was Finen sty wuims Sl S1AI WTL W wut seals sth

Table 17 - Examples of Wildcards with % and *_’ (Source: https://www.w3schools.com/sql/sql_wildcards.asp)

Let's see some examples with the Customers table.

28|Page

= 88l & s @ o BN ZAUG) ¥ o

The European Commission's support far the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commyssion cannat be held responsible for any use which may
be made af the infarmation contained therain

https://www.w3schools.com/sql/sql_wildcards.asp
https://www.w3schools.com/sql/sql_wildcards.asp
https://www.w3schools.com/sql/sql_wildcards.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

e T e L e o . -

0 S VI e A SmeTmry - - oI »

Table 18 - Customers table in WILDCARDS example (Source:
https://www.w3schools.com/sql/sql_wildcards.asp)

Examples with the % Wildcard

In this example, we are selecting all customers with a City starting with “ber”:
SELECT * FROM Customers

WHERE City LIKE 'ber%';

In the following example, we are selecting all customers with a City containing “es”:
SELECT * FROM Customers
WHERE City LIKE '%es%';

Examples with the _ Wildcard

Here, we are selecting all customers with a City starting with any character followed
by “ondon”:

SELECT * FROM Customers

WHERE City LIKE '_ondon’;

In this example, we are again selecting all customers with a City starting with ‘L’,
followed by any character, followed by "n", followed by any character, followed by "on
SELECT * FROM Customers

WHERE City LIKE 'L_n_on’;

Examples with the [charlist] Wildcard

Here, we are selecting all customers with a City starting with ‘b’," s’, or ‘p’:

29|Page
= 18l) e G4
! ZENS 3 4] v E A - :
Q IN POWER lnnumt cn L) Ai ffaran TP
The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannat be held responsible for any use which may

be made al the information contained thersin

https://www.w3schools.com/sql/sql_wildcards.asp

Co-funded by the
Erasmus+ Programme
of the European Union

SELECT * FROM Customers
WHERE City LIKE '[bsp]%';

In the following example, we are selecting all customers with City starting with ‘a’, ‘b’,
or‘c:

SELECT * FROM Customers

WHERE City LIKE '[a-c]%'";

Examples with the [!charlist] Wildcard
The exclamation mark shows characters that do not contain a specified string. For
example, we want to select all customers with a City that does not start with ‘b’, ‘s’, or

p:
SELECT * FROM Customers
WHERE City LIKE '['bsp]%';

As an alternative, we can use the following:
SELECT * FROM Customers
WHERE City NOT LIKE '[bsp]%';

SQL In

The IN operator is used to specify multiple values in a WHERE clause. It can be

considered as satisfying various conditions.

Syntax 1:
SELECT column_name(s)
FROM table_name

WHERE column_name IN (valuel, value2, ...);

30|Page
= P8l &5 e ~ ZAUG) /
|} ENS AW\ Corvtar for Soou a i Py ’ s
Q INPOWER &5 Innovation Py AR ez
The European Commission's support far the production of this publication does not constitute an endorsement of the

comtents, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made af the infarmation contained therain

Co-funded by the
Erasmus+ Programme
codedsp of the European Union

Syntax 2:

SELECT column_name(s)

FROM table_name

WHERE column_name IN (SELECT STATEMENT);

There are two ways to use the IN operator, as you have seen.

Suppose that we have a table called “Customers” containing the following columns:

CustomerID, CustomerName, ContactName, Address, City, PostalCode and Country.

© m © Cont, dd City PostaliCode Country

1 Marie Andery Overe Sur. 57 Sedn pral Germeny
Ara T Aesin, Oe W Comttucon Mescs D F %) Moz

3 Actomic Morwns Mstsderse 2203 ez OF %33 Menics

. Thomat way 120 Sangver 5g London MAL LD e

5 Owsting Berguvrrigen B Lded 5858 2 Smece
Sergund

s Eum See =anna Mo LT At s5308 Garmany

Dwtimtwnsen

L 4 Forow perw = e Srmoecim 4 pace semer ol] £7000 Frarce
Oteaus

. Botao Cometas M Sommer C anout &7 ‘ane 20033 Ssen

Table 19 - Customers Table in IN operator example (Source: https://www.w3schools.com/sql/sql_in.asp)

As an example, we want to select all the customers that are located in Germany,
France or UK:

SELECT * FROM Customers

WHERE Country IN (‘Germany’, ‘France’, ‘UK’)

Another example is selecting all the customers that are not located in Germany,
France or the UK:

SELECT * FROM Customers

WHERE Country NOT IN (‘Germany’, ‘France’, ‘UK’)

31|Page
=808l & s @ i EIZAUG) 4 A= s

The European Commission's support far the production of this publication does not constitute an endors
comtents, which reflect the wews only of the authors, and the Commission cannot be held responsible for

ent of the

any use which may
be made af the infarmation contained therain

https://www.w3schools.com/sql/sql_in.asp

Co-funded by the
Erasmus+ Programme
of the European Union

Let's also consider a third example where we want to select customers that are from

the same countries as the suppliers:
SELECT * FROM Customers
WHERE Country IN (SELECT Country FROM Suppliers)

SQL Between

The BETWEEN operator provides a range of values to select from. The values can be
text, numbers or dates. The BETWEEN operator includes the starting and end values.

Syntax:

SELECT column_name(s)

FROM table_name

WHERE column_name BETWEEN valuel AND value2;

Let's say that we have the following table, which contains information on different

products.
PrudustID ProcurtName Suppiie 1D CatugorylD Lntt Price
e | | 12 vosen » 20 tegy 1"
Chang : i o4 ¢ 13 =2 botties 8 J
3 AN wear TyTup 3 3 13 - 350 ool hotthes]
‘ Ohf Arton 5 S3)en Sassanmy : < &8 - 8 03)y
E Chef Artan v Gumts Mis : 3 3 tures n

Table 20 - BETWEEN operator example (Source: https://www.w3schools.com/sal/sal between.asp)

There will be a series of examples with the following operators: BETWEEN, NOT
BETWEEN, BETWEEN with IN, BETWEEN and NOT BETWEEN with text values and
BETWEEN dates.

BETWEEN Example: Selects all products with a price range of 10 to 20.

SELECT * FROM Products
WHERE Price BETWEEN 10 AND 20;

32|Page
= 8l & g @ o ZAUG) 4
% WER. IR o o oo a i) 4a)
Q INPOWER &5 Innovation Py AR o208
The European Commission's support far the production of this publication does not constitute an endorsement of the

ontents, which reflect the wews only of the authors, and the Commession cannat be held responsible for any use which may

be made af the infarmation contained therain

https://www.w3schools.com/sql/sql_between.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

NOT BETWEEN Example: Shows all the products outside the range that we set in the

previous example.

SELECT * FROM Products
WHERE Price NOT BETWEEN 10 AND 20;

BETWEEN with IN Example: Selects all products with a price range of 10 to 20 and
does not show products with CategorylD 1, 2, or 3.

SELECT * FROM Products
WHERE Price BETWEEN 10 AND 20
AND CategoryID NOT IN (1,2,3);

BETWEEN with text values Example: Selects all products with a ProductName

between Carnarvon Tigers and Mozzarella di Giovanni.

SELECT * FROM Products
WHERE ProductName BETWEEN 'Carnarvon Tigers' AND 'Mozzarella di Giovanni'
ORDER BY ProductName;

NOT BETWEEN with text values Example: Selects all products with a ProductName

NOT between Carnarvon Tigers and Mozzarella di Giovanni.

SELECT * FROM Products

WHERE ProductName NOT BETWEEN ‘'Carnarvon Tigers' AND 'Mozzarella di
Giovanni'

ORDER BY ProductName;

33|Page

"A sugl {3 N powm @_. [rmu.‘a{ on . Z *)111/44&07% -

Iu_‘L_ﬂ pean Commisson's support far the production of this pubdication does not sttute an endorse

comtents, which reflect the wews only of the authors, and the Commessian cans JH !,’l,ll,.h’;.,l\ll sible for an y use which may
be made ol 'Iv-f m'w mation contained therain

Co-fundad by the
Erasmus+ Programme
of the European Union

Ovrdes ID Customer 1D EwpioyeelD OrerDate Shipper1D
10248 ¥ 5 TV 3
- ' ’ Visse
10232) . 1999 2
10291 e) 11
10282 Te - Tiwivee

Table 21 - BETWEEN operator example (Source: https://www.w3schools.com/sgl/sql_between.asp)

BETWEEN Dates Example: Selects all orders with an OrderDate between '01-July-
1996' and '31-July-1996'.

There are two ways that this can be done, by either using a hashtag (#) or quote marks

)

SELECT * FROM Orders

WHERE OrderDate BETWEEN #07/01/1996# AND #07/31/1996#;
OR

SELECT * FROM Orders

WHERE OrderDate BETWEEN '1996-07-01' AND '1996-07-31";

SQL Aliases

Aliases assign a temporary name to a table or a column within a table. An alias exists
only for the duration of a query, and it is often used to make column names more
readable. An alias is created by using the keyword AS.

Syntax for column alias:
SELECT column_name AS alias_name
FROM table_name;

34|Page
= 18l) e G4
! ZENS 3 4] v E A - :
Q IN POWER lnnumt cn L) Ai ffaran TP
The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannat be held responsible for any use which may

be made al the information contained thersin

https://www.w3schools.com/sql/sql_between.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

Syntax for table alias:
SELECT column_name(s)
FROM table_name AS alias_name;

Column Aliases

Let's see an example that creates two aliases, one for each column:

SELECT CustomerID AS ID, CustomerName AS Customer
FROM Customers;

Another example creates two aliases again:

SELECT CustomerName AS Customer, ContactName AS [Contact Person]
FROM Customers;

Note that it is put in square brackets ([]) because the alias contains spaces. Quotation
marks can be used as an alternative to square brackets.

You also have the option of creating an alias that contains one or more columns, let’s
look at the example below to see how it works:

SELECT CustomerName, Address + ', ' + PostalCode + ' ' + City + ', ' + Country AS
Address

FROM Customers;

The above statement changes a little bit in MySQL:

SELECT CustomerName, CONCAT(Address,’, ',PostalCode,’, ',City,’, ',Country) AS
Address

FROM Customers;

Table Aliases
The following example selects all the orders from the customer table with
CustomerlD=4 (Around the Horn).

35|Page

- sual 5_) wmwm @. Innovation -Z—_)4“4M% ==

Jropean Commissan's support far the production of this p

pan does ne titute an endorsement of
CAannor be h n,h,. 1espo:

be made af the infarmation contained therain

nsible for any use which may

ents, which reflect the wews only of the authors, and the Cor

Co-funded by the
Erasmus+ Programme
of the European Union

Here aliases are used to shorten the query:

SELECT o0.OrderID, 0.OrderDate, c.CustomerName

FROM Customers AS c, Orders AS o

WHERE c.CustomerName='Around the Horn' AND c.CustomerlD=0.CustomerID;

A query without aliases would look something like this:

SELECT Orders.OrderlID, Orders.OrderDate, Customers.CustomerName

FROM Customers, Orders

WHERE Customers.CustomerName="Around the Horn' AND
Customers.CustomerlD=0Orders.CustomerID;

SQL Joins

A JOIN clause combines rows from two or more tables based on a related column

found in both tables.

Let’s look at the Orders table and the Customers table:

= ™ C CoctactMame Coantry
OvderID CustormeriD Order Dote
atedi Famteeve Maca dotes vy
10308 2 19960518
Ama TPt 2Zme Trgite (SO
10309 3 1956-05-1% ErcaTecedse v hewaze
] ATorg orend Thgue) Amoro "~ o
10330 ” 195-08-20 starane

Tables 22 & 23 - Orders and Customers Tables in JOIN example (Source:
https://www.w3schools.com/sgl/sql_join.asp)

If you look at the two tables, you will notice a common column called the CustomerID.
Based on the common column, we can create an SQL statement that uses an INNER
JOIN, which selects records that have matching values in both tables.

Example:

SELECT Orders.OrderID, Customers.CustomerName, Orders.OrderDate

FROM Orders

36|Page

"& Sual Q N mwm & lﬁm.vt o .Z ;.)‘“/4M¥ -

'l".'.JI pean Commisson's support far the production of this publication does not constitute an endors

which reflect the wews only of the authors, and the Commssian cannor be h |,h, responsible for an y use which may

be made af the infarmation contained therain

https://www.w3schools.com/sql/sql_join.asp

Co-fundad by the
</> Erasmus+ Programme
codedsp of the European Union

INNER JOIN Customers ON Orders.CustomerID=Customers.CustomerID;

This command will create something like the following table:

Order 1D Cuntomar Nama OrderDate
10308 Ane Traglbe Brrparededes ¢ heledee Wi 1ee
10345 ANONS Morens Taquena 1537/10%
1038 Areund e Mo /AN 19
10088 Areund the Hom 1WA 1
s Berylurm anwbonnp Wi/100

Table 24 - JOIN example (Source: https://www.w3schools.com/sgl/sgl_join.asp)

There are four different joins in SQL:

1. (INNER) JOIN: Returns records that have matching values in both tables;

2. LEFT (OUTER) JOIN: Returns all records from the left table and the
corresponding matched records from the right table;

3. RIGHT (OUTER) JOIN: Returns all records from the right table and the
corresponding matched records from the left table;

4. FULL (OUTER) JOIN: Returns all records when there is a match in either the
left or the right table.

INNER JOIN LEFT JOIN
RIGHT JOIN FULL QUTER JOIN

Figure 1 - Different types of JOINS (Source: https://www.w3schools.com/sgl/sgl_join.asp)

SQL Inner Join

The INNER JOIN keyword selects records that have matching values in both tables.
37|Page

= 308l & 5ilss @ i BN ZAUG) 4 i o s

The European Commission's support far the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commyssion cannat be held responsible for any use which may
be made af the infarmation contained therain

https://www.w3schools.com/sql/sql_join.asp
https://www.w3schools.com/sql/sql_join.asp

Co-funded by the
Erasmus+ Programme
of the European Union

Syntax:

SELECT column_name(s)
FROM tablel

INNER JOIN table2

ON tablel.column_name = table2.column_name;

The same tables as the example in the previous subsection are used to perform an

inner join.
OrderID CustomerID OrderDate Custorme 1D Customer Name ContactName Country
1 Alfrads Futterh ste Mana Anden Garmang
10308 : 1996-09-18
Ara Taalio Ann Tl Mesico
10009 » 1996-0%-19 Emparedados vy halados
-~) Actonio Moreno Taqueria Antonin Mesico
10318 19960920 Moreno
Tables 25 & 26 - Orders and Customers Tables in JOIN example (Source:

https://www.w3schools.com/sal/sgl_join_inner.asp)

In this example, we want to retrieve the names of customers and their corresponding
Order IDs:

SELECT Orders.OrderID, Customers.CustomerName
FROM Orders
INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID;

Note that the INNER JOIN keyword will select all rows from both tables that match. If
records in the Orders table do not have matches in the Customers table, they will not
be selected.

In the following example, we will see how to join three tables that contain customer

and shipper information:

SELECT Orders.OrderIlD, Customers.CustomerName, Shippers.ShipperName
FROM ((Orders
INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID)

38|Page
= el ¢ s)4
: LEINS B\ Corttar for Soou a 1 r y Ay
A G IN POWER o Innovation Yy m ‘-‘:‘:_: R
The European Commission's support far the production of this publication does not constitute an endorsement of the
coments, which reflect the v an cannot be held responsible for any use which may

be made af the infarmation contained therain

https://www.w3schools.com/sql/sql_join_inner.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

INNER JOIN Shippers ON Orders.ShipperlD = Shippers.ShipperID);

SQL Left Join

The LEFT JOIN keyword returns all records from the left table and the matching
records from the right table. If no matches are found, zero records from the right table

will be shown as a result.

Syntax:

SELECT column_name(s)

FROM tablel

LEFT JOIN table2

ON tablel.column_name = table2.column_name;

Note that the LEFT JOIN is called LEFT OUTER JOIN in some databases.

As an example, let’s select all customers and any orders that these customers might
have:

SELECT Customers.CustomerName, Orders.OrderlD

FROM Customers

LEFT JOIN Orders ON Customers.CustomerlD = Orders.CustomerID

ORDER BY Customers.CustomerName;

Note that all records from the left table Customers will be returned, even if there are
no matches in the right table Orders.

SQL Right Join

The RIGHT JOIN keyword essentially follows the same logic from the right side instead
of the left one as described in the previous subsection.

The RIGHT JOIN will return all records from the right table and the matching records

from the left table, if there are any.
39|Page

suel O @ i .z)‘,,44607@(3

pean Commisson's support lor the production of this pubdicastion does not censtitute an endorsement of the

s, which reflect the wews only of the authors, and th

ssion cannot be held responsible for any use which may

be made al the information contained theran

Co-funded by the
Erasmus+ Programme
of the European Union

Syntax:

SELECT column_name(s)
FROM tablel

RIGHT JOIN table2

ON tablel.column_name = table2.column_name;

Consider the following two tables, Orders and Employees tables:

Ondec IO Customer 1D EmployesTD OrdetDate ShipperiD
00 : v v ’

10909 " 100919

ne n . 198%-09-20 4

Table 28 - Orders Table in RIGHT JOIN example (Source: https://www.w3schools.com/sql/sgl_join_right.asp)

Frptryen i P Lo LT LY .

' . 3 ey RS ML Bt o
Pube .~ Vv P=pill

) e ing - LI AL =gl) g

Table 29 - Employees Table in RIGHT JOIN example (Source:

https://www.w3schools.com/sgl/sal_join_right.asp)

The following example will return all employees and any orders that they might have
placed:

SELECT Orders.OrderID, Employees.LastName, Employees.FirstName
FROM Orders

RIGHT JOIN Employees ON Orders.EmployeelD = Employees.EmployeelD
ORDER BY Orders.OrderlID;

Note that the RIGHT JOIN keyword will return all records from the right table,
Employees, even if there are no matches found in the left table, Orders. The same
logic applies as in the LEFT JOIN that we saw earlier.

40|Page
=88l & s @ -~ EJZAUGH
/ ZENS B\ Cortier { j
Q IN POWER innovation L) A ko S
The European Commission's support far the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannat be held responsible for any use which may

be made af the infarmation contained therain

https://www.w3schools.com/sql/sql_join_right.asp
https://www.w3schools.com/sql/sql_join_right.asp

Co-funded by the
Erasmus+ Programme
codedsp of the European Union

SQL Full Join

The FULL JOIN keyword returns all records when matching records are found in either
the right or the left table.

Note that FULL OUTER JOIN and FULL JOIN are the same thing and a FULL JOIN
can potentially return large result-sets.

Syntax:

SELECT column_name(s)

FROM tablel

FULL OUTER JOIN table2

ON tablel.column_name = table2.column_name
WHERE condition;

Consider the following two tables, the Orders table and the Customers table:

Crdes ID Customees IO EmplayeslD QrderDate Suppe D
e 2 ’ 19%8-09-18 3

H2 =) » ’ 1956083

s ” L] 15560920 2

Table 30 - Orders Table in FULL JOIN example (Source: https://www.w3schools.com/sql/sgl join full.asp)

€ w « Comt o thmme Add) vue oy PustaiCode Country
1 Ahedy e e Abey Ohete . 87 Berin 152 Gannany
e Thurts Prpsiededss » Ane Tt Aalie. 4o lo Conmunm Mesin otan Hewin
ey a2 nr
’ At T Tl M Maladerus 2952 L LU 02 Mowry
e oy

Table 31 - Customers Table in FULL JOIN example (Source: https://www.w3schools.com/sgl/sgl_join_full.asp)

An example that selects all customers and orders:

SELECT Customers.CustomerName, Orders.OrderID

FROM Customers

FULL OUTER JOIN Orders ON Customers.CustomerID=0Orders.CustomerID

41 |Page
=800l ¢ s @ s BJZAUG) 4 A ¥ o

The European Commission's support far the production of this publication does not constitute an endorsement of the

comtents, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made af the infarmation contained therain

https://www.w3schools.com/sql/sql_join_full.asp
https://www.w3schools.com/sql/sql_join_full.asp

Co-funded by the
</> Erasmus+ Programme
codedsp of the European Union

ORDER BY Customers.CustomerName;

The result of this full join can look something like this:

Custumar Name Ordes 1D
W 1030%
Wy 10318
Afvede Puttes ute Nub
M Vu,]»l) EMEARIANN v MA20N 1030w
&rkme Mawu Taguerie AU
Table 32 - FULL JOIN on Customers and Orders Tables Example (Source:

https://www.w3schools.com/sal/sal_join_full.asp)

Here we can see that it returns all matching records from both tables even if no
common matches are found between the two tables. In the case of no common
matches, a null value is assigned.

SQL Self Join

A self-join is considered a regular join, but the table is joined within.

Syntax:

SELECT column_name(s)
FROM tablel T1, tablel T2
WHERE condition;

T1 and T2 are aliases used for the same table.

Let’s take the Customers table as an example:

€ mw ContactMame Andvess Oy PostaCade Couwntry
: Wy T s e W Aoty Ol 0 50 [5]
Ars Trisho trgarededn ¢ e Muphe Sl fu o TINEDLOON Mo it Seeds
R nan o
) AT ena Ty er e Ll Satadersa 1)1l "= e mvect
o~ o

Table 33 - Customers Table in SELF JOIN example (Source: https://www.w3schools.com/sql/sal_join_self.asp)

42 |Page
2 el & sz @ oo PN Z AUGH 4 As
44 -
o I] o INPOWER G5 Innovation E -)AAA R S @R
aaseme
The European Commission's support far the production of this publication does not constitute an endorsement of the

comtents, which reflect the views only of the authors, and the Commission cannat be held responsible for any use which may
be made af the information contained therein

https://www.w3schools.com/sql/sql_join_full.asp
https://www.w3schools.com/sql/sql_join_self.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

SELECT A.CustomerName AS CustomerNamel, B.CustomerName AS
CustomerName2, A.City

FROM Customers A, Customers B

WHERE A.CustomerlID <> B.CustomerID

AND A.City = B.City

ORDER BY A.City;

Here, we want to select customers that are from the same city:

SQL Union

The UNION operator is used to combine the result-set of two or more SELECT

statements.
There are a few requirements to enable a UNION:

1. Every SELECT statement within the UNION must have the same number of
columns;

2. The columns must have similar data types;

3. The columns in every SELECT statement must be in the same order.

Syntax:
SELECT column_name(s) FROM tablel
UNION
SELECT column_name(s) FROM table2;

* Note that the UNION operator selects only distinct values by default.

To allow duplicate values, use UNION ALL:

SELECT column_name(s) FROM tablel
UNION ALL
SELECT column_name(s) FROM table2;

* Note that the column names in the two SELECT statements are usually equal.

43|Page

- sual 5_) wmwm @. Innovation -Z—_)4“4M% ==

pan does ne titute an endorsement of
CAannor be h n,h,. 1espo:

be made af the infarmation contained therain

Jropean Commissan's support far the production of this p

nsible for any use which may

ents, which reflect the wews only of the authors, and the Cor

Co-funded by the
</> Erasmus+ Programme
codedsp of the European Union

Now let's see some examples of UNION, UNION ALL, and UNION with where
statements to understand a little bit better how we can use it.

C - C ContactMame Addvess Ciry PostaiCode Country
L Afreas Sumarieny Mang Ancers Qoere Szx 57 Sertn 12209 Carmary
: Ara Trpis S-garedeton y Anp Bt Avda. de b Conmtucitn Mesks o Merco
P cton bread or
3 Aoronic Merene Tacuaris Aseoris Macaderss 1332 Mo oss) Maves
Soreng oF

Table 34 - Customers Table in UNION example (Source: https://www.w3schools.com/sqgl/sgl_union.asp)

Supplver 1D Sapplier Name ContactMame Adinens Ciry PostalCode Country
i Cactn Ugued Choctle Cooge @9 Givert 32 wordoe 1 450 -~

foww Oriaars Capun Detghts Srhatey Bave PO Bow 78834 Mew Oraans TON17 L
] e ety s rareriend Segne Murphy 707 Oxfore A4 aald 104 LA

Table 35 - Suppliers Table in UNION example (Source: https://www.w3schools.com/sal/sgl union.asp)

The first example is used to return distinct cities from both tables shown above:
SELECT City FROM Customers

UNION

SELECT City FROM Suppliers

ORDER BY City;

Since we are using UNION, the suppliers from the same city will only be listed once.
If you want to see the duplicated values, use UNION ALL.

The following example will do precisely that and return any duplicate values from both
tables:

SELECT City FROM Customers

UNION ALL

SELECT City FROM Suppliers

ORDER BY City;

44| Page
= 88l & s @ i B ZAUG) 4 Awan¥-. o

The European Commission's support far the production of this publication does not constitute an endorsement of the
comtents, which reflect the views only of the authors, and the Commission cannat be held responsible for any use which may
be made af the infarmation contained therain

https://www.w3schools.com/sql/sql_union.asp
https://www.w3schools.com/sql/sql_union.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

The following example will return the distinct German cities from both the “Customers”
and “Suppliers” tables with the use of WHERE:

SELECT City, Country FROM Customers

WHERE Country = ‘Germany’

UNION

SELECT City, Country FROM Customers

WHERE Country = ‘Germany’

ORDER BY City;

This example is similar to the previous one, but we will be returning possible duplicate
values:

SELECT City, Country FROM Customers

WHERE Country = ‘Germany’

UNION ALL

SELECT City, Country FROM Customers

WHERE Country = ‘Germany’

ORDER BY City;

Another example will list all customers and suppliers:
SELECT 'Customer' AS Type, ContactName, City, Country
FROM Customers

UNION

SELECT 'Supplier', ContactName, City, Country

FROM Suppliers;

See that we used AS here to create an alias for the given query that will disappear
after completing it.

SQL Group By

The GROUP BY statement groups rows with the same values into summary rows. As
an example, consider that you want to find the number of customers in each country.

45|Page

p‘ sual t) wr’owm@; Innovatic “.Z—_)“,;44¢607G\é

he European Commisson's support [I:u; oduction of this publication does not constitute an endorsement (
which reflect the wews only of the authors, and the

ssion cannot be held responsible for any use which may
be made af the infarmation contained therain

Co-funded by the
Erasmus+ Programme
of the European Union

Also, the GROUP BY statement is often used with aggregate functions such as
COUNT(), MAX(), MIN(), SUM(), AVG() to group the result by one or more columns.

Syntax:

SELECT column_name(s)

FROM table_name

WHERE condition

GROUP BY column_name(s)

ORDER BY column_name(s);

We will be using the Customers table, shown below, in our examples.

[I < Manee ContactMame Address City PostalCode Country
Afress Fuerkmte Marg Ancers Qoere Sx 7 Sertm 12209 Germary
2 ira Trgilo Emparesasas y Ava Trgiio Avzy. 2e b Corgmtucan Mewco 05021 Mesco
helaco: 2 DF
| Artoms Morens Teguers Amtoris Mataderoy 31332 e o3 ez
"oere DF

Table 36 - Customers Table in GROUP BY example (Source: https://www.w3schools.com/sgl/sgl_groupby.asp)

As a first example, let’s list the number of customers found in each county:
SELECT COUNT(CustomerID), Country

FROM Customers

GROUP BY Country;

As a second example, we will again list the number of customers in each country, but
in descending order:

SELECT COUNT(CustomerID), Country
FROM Customers

GROUP BY Country;

ORDER BY COUNT(CustomerID) DESC;

46 |Page
nsﬂal CTHIENS : P4
) ZENS 1 4} ” { i ‘ 2y
- Q IN POWER lnrmmt cn _)-‘ i ffaran 2
The European Commission's support far the production of this publication does not constitute an endorsement of the
coments, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may

be made al the information contained thersin

https://www.w3schools.com/sql/sql_groupby.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

In the following example, we will use GROUP BY with JOIN by using the Orders and

Shippers tables.
OrderID CustomerID EmployeelD OtderDate ShipperlD
10248 S0 s 1996-07-04 3
10249 81 5 1996-07-05 1
10250 34 4 1936-07-08 2

Table 37 - Orders Table in GROUP BY example (Source: https://www.w3schools.com/sqgl/sgl_groupby.asp)

Shigppe 1D Shipper Name
i Spordy frprwns

IS PACAAge

) Federnl Shppny

Table 38 - Shippers Table in GROUP BY example (Source: https://www.w3schools.com/sal/sal_groupby.asp)

In this example, we will list the number of orders sent by each shipper:

SELECT Shippers.ShipperName, COUNT(Orders.OrderID) AS NumberOfOrders
FROM Orders

LEFT JOIN Shippers ON Orders.ShipperID = Shippers.ShipperlD

GROUP BY ShipperName;

See here we started by selecting the Shippers’ names in the Shippers table and

counted the orders based on their OrderID saved as an alias.

Then we performed a LEFT JOIN to join the Shippers table (table 2) on the Orders
table (table 1) and group them by the Shipper’s name.

SQL Having

The HAVING clause was added to SQL because WHERE cannot be used with
aggregate functions.

Syntax:
SELECT column_name(s)
FROM table_name
47 |Page
= 18l ¢ s @ i B ZAUG) 4 Apion' &

The European Commission's support far the production of this publication does not constitute an endorsemer

o @GP

t of the
comtents, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made al the information contained thersin

https://www.w3schools.com/sql/sql_groupby.asp
https://www.w3schools.com/sql/sql_groupby.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

WHERE condition
GROUP BY column_name(s)
HAVING condition
ORDER BY column_name(s);

Customes 1D Customes Name ContactNama Addvoss City PostalCode Countiy
1 Alfreds Funerd iste Marta Andary Coare 54y, 7 Bertin 1300 Garmany
Ara Trujlo Erperedados y Ane Trupia Avae. de s Cormtitution México oo Mevxn
helsdt 22 or
i Artonie Moreno Tagueris Antanio MMadere 3302 Mésico 0%y Muvcu
Marene or

Table 39 - Customers Table in HAVING example (Source: https://www.w3schools.com/sqgl/sgl_having.asp)

In this example, we will be using the Customers table once again. Here, we want to
list the number of customers found in each country, but we also want to include
countries that have more than five customers.

SELECT COUNT(CustomerID), Country
FROM Customers

GROUP BY Country

HAVING COUNT(CustomerID) > 5;

In this example, we want to list the number of customers per country again and include

countries with more than five customers in descending order.

SELECT COUNT(CustomerID), Country
FROM Customers

GROUP BY Country

HAVING COUNT(CustomerID) > 5
ORDER BY COUNT(CustomerID) DESC;

Let’s try a few other examples by combining what we have learnt so far.

48| Page

{ ZENS £ ; E -
- s E Q IN POWER lnnumt cn ”‘ Prvi m Sawiers @R

The European Commission's support far the production of this publication does not constitute Jn endo

ent of the

contents, which reflect the wews only of the authors, and the Commssion cannat be lu,h, responsible for any use which may

be made al the information contained thersin

https://www.w3schools.com/sql/sql_having.asp

Co-funded by the
Erasmus+ Programme
of the European Union

We will use the Orders and Employees tables in the following two examples.

Order1D Customer 10 EmployeelD OvdedDate Shipper1D
10248 “e 3 19960704 3

10244 n L) 19940708

102%0 - 4 199¢-07-08 :

Table 40 - Orders Table in HAVING example (Source: https://www.w3schools.com/sal/sgl_having.asp)

Employoeld LastName P stName BirthDate Photo Notes

| Davoile Nancy 1968-12-00 EmplD s .pie Eoucation includes & BA
Futer Andrew 194620310 ImplDI ph Andrew received e BTS

) Lavering lanet 1943 -00-30 EmelD) px Janat has a 05 Segres

Table 41 - Orders Table in HAVING example (Source: https://www.w3schools.com/sql/sqgl_having.asp)

The following example will list the employees that have registered more than ten

orders:

SELECT Employees.LastName, COUNT(Orders.OrderID) AS NumberOfOrders
FROM (Orders

INNER JOIN Employees ON Orders.EmployeelD = Employees.EmployeelD)
GROUP BY LastName

HAVING COUNT(Orders.OrderID) > 10;

In this example, we will list the employees “Davolio” or “Fuller” if they have registered
orders more than 25 times:

SELECT Employees.LastName, COUNT(Orders.OrderID) AS NumberOfOrders
FROM (Orders

INNER JOIN Employees ON Orders.EmployeelD = Employees.EmployeelD)
WHERE LastName = ‘Davolio’ OR LastName = ‘Fuller’

GROUP BY LastName

HAVING COUNT(Orders.OrderID) > 25;

49|Page
nsﬂal CTHIENS : P4
) ZENS 1 4} ” { i ‘ 2y
- Q IN POWER lnrmmt cn _)-‘ i ffaran 2
The European Commission's support far the production of this publication does not constitute an endorsement of the
coments, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may

be made al the information contained thersin

https://www.w3schools.com/sql/sql_having.asp
https://www.w3schools.com/sql/sql_having.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

The SELECT INTO statement copies data from one table into a new table.

SQL Select Into

Syntax to copy all columns into a new table:
SELECT *

INTO newtable [IN externaldb]

FROM oldtable

WHERE condition;

Syntax to copy only some columns into a new table:
SELECT columnl, column2, column3, ...

INTO newtable [IN externaldb]

FROM oldtable

WHERE condition;

The new table will keep the column names and types the same as the old table. You
can create new columns with the AS clause.

Example of creating a backup copy of Customers:
SELECT * INTO CustomersBackup2017
FROM Customers;

Example of using IN clause to copy the table into a new table in another database:
SELECT * INTO CustomersBackup2017 IN '‘Backup.mdb’
FROM Customers;

Example to copy only a few columns into a new table:
SELECT CustomerName, ContactName INTO CustomersBackup2017
FROM Customers;

Example to copy only the German customers into a new table:

50|Page

- sual 5_) wmwm @. Innovation -Z—_)4“4M% ==

Jropean Commissan's support far the production of this p

pan does ne titute an endorsement of
CAannor be h n,h,. 1espo:

be made af the infarmation contained therain

nsible for any use which may

ents, which reflect the wews only of the authors, and the Cor

Co-fundad by the
Erasmus+ Programme
of the European Union

SELECT * INTO CustomersGermany
FROM Customers
WHERE Country = '‘Germany';

Example to copy data from multiple tables into a new table:

SELECT Customers.CustomerName, Orders.Order|D

INTO CustomersOrderBackup2017

FROM Customers

LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerlID;

SELECT INTO can also be used to create a new, empty table using the schema of
another.

To do that, add a WHERE clause that returns no data:
SELECT * INTO newtable

FROM oldtable

WHERE 1 = 0;

SQL Insert Into Select

The INSERT INTO SELECT statement copies data from one table and inserts it into

another. It requires the data types in the source and target table to match.

Syntax to copy all columns from one table to another:
INSERT INTO table2

SELECT * FROM tablel

WHERE condition;

Syntax to copy only some columns from one table to another:
INSERT INTO table2 (columnl, column2, column3, ...)
SELECT columnl, column2, column3, ...

FROM tablel

51|Page

B sual 5_) wmwm @. Innovation -Z—_)4“4M%

he European Commisson's support f¢ |:|-| roduction of this publication does not constitute an endorsement of
¢ held responsible for any use which may

ents, which reflect the wews only of the authors, and the Commessia

be made af the infarmation contained therain

Co-funded by the
Erasmus+ Programme
of the European Union

WHERE condition;
Custommes Mastse ContactName Address iy PeszalCode Coumtry
4 Atess ety M3 Lodes Coers St 57 E 12208 CeTary
2 ira Tithho Segeredascy y Ay Ty Avda. f¢ b Conmitucats Meuts o1 MercoH
acion 232 or
3 Artane Morens Tasueria Aszores Marater=$ 2332 A TE o050 Maxico
Moene oF
Table 42 - Customers Table in INSERT INTO SELECT example (Source:
https://www.w3schools.com/sgl/sal insert_into_select.asp)
SupplierID SupplierMame ContactName Address Oy Postal Code Country
] Exotic Uguld Chirictte Cooper 49 Gioert 2 Londore £C1 450 Us
2 New Crisans Cajun Deiights Shelley Burke PO, Box 78934 New Orleans 70117 usa
3 Grandma Kelly s Homestead Regira Murphy 70T Oxford Rd Ann Arbor 42104 usa,

Table 43 - Suppliers Table in INSERT INTO SELECT example (Source:
https://www.w3schools.com/sql/sgl insert into_select.asp)

We will be using the Customers and Suppliers tables, shown above, in the following
examples.

The first example copies Suppliers into Customers (note that the columns that are not
filled with data will contain null values):

INSERT INTO Customers (CustomerName, City, Country)

SELECT SupplierName, City, Country FROM Suppliers;

This example copies Suppliers into Customers to fill all columns:

INSERT INTO Customers (CustomerName, ContactName, Address, City,
PostalCode, Country)

SELECT SupplierName, ContactName, Address, City, PostalCode, Country FROM
Suppliers;

The third example copies only the German suppliers into Customers:
INSERT INTO Customers (CustomerName, City, Country)

SELECT SupplierName, City, Country FROM Suppliers

WHERE Country="Germany",

52|Page
) ZENS N Dot for Soou { Py . =2
- Q INPOWER &5 Innovation g _)-‘ i ffaran -_;;:':_ G
The European Commission's support far the production of this publication does not constitute an endorsement of the
coments, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made al the information contained thersin

https://www.w3schools.com/sql/sql_insert_into_select.asp
https://www.w3schools.com/sql/sql_insert_into_select.asp

COMTENtS, w

= 808 & s @ o CHIZ__E-)MAZM‘@

The European Commission's support for the production of this publication does not constitute an enda

Co-fundad by the
Erasmus+ Programme
of the European Union

SQL Case

The CASE statement goes through a series of conditions and returns a value when
the first condition is met. Think of it as an if, then, else statement.

When one condition is found true, it will stop going through the loop. If no conditions
are found true, it will return the value in the ELSE clause.

Note that if there isn’t an ELSE clause and no conditions are found true, it will return
NULL.

Syntax:

CASE
WHEN condition1 THEN resultl
WHEN condition2 THEN result2
WHEN conditionN THEN resultN

ELSE result
END;
Order Detallith Orfer 1D Productit Quantity
i to340 11 1]
L0248 4 (
] L0340 2 b |
4 1034 1 “
L 1649 " “0

Table 44 - Orders Table in CASE example (Source: https://www.w3schools.com/sal/sgl _case.asp)

In the following examples, we will use the Orders table.

The first example will go through a series of conditions and return a value when the
first condition is met:

SELECT OrderID, Quantity,
53|Page

e

went of the

which reflect the wews only of the authors, and the Commession cannat be luvh_, responsible for any use which may

be made al the information contained thersin

https://www.w3schools.com/sql/sql_case.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

WHEN Quantity > 30 THEN 'The quantity is greater than 30'
WHEN Quantity = 30 THEN 'The quantity is 30’
ELSE 'The quantity is under 30'

END AS QuantityText

FROM OrderDetails;

In this second example, we will order the customers by City. Note that if City is NULL,
it will be ordered by Country.
SELECT CustomerName, City, Country
FROM Customers
ORDER BY
(CASE
WHEN City IS NULL THEN Country
ELSE City
END);

SQL Null Functions

The NULL functions include the following: IFNULL(), ISNULL(), COALESCE(), and
NVL().

Here, we will use the “Products” table:

r 1 ProductName UnitPrice UniitsInStock UnitsOnOider

! Jarisberg 1043 16 15
Matcwpore 12.56 2

] Gorgonzois 1567 " a0

Table 45 - Products Table in NULL functions example (Source: https://www.w3schools.com/sal/sgl isnull.asp)

Let’s say that the “UnitsOnOrder” column is optional and may contain NULL values.

Example:
SELECT ProductName, UnitPrice * (UnitsinStock + UnitsOnOrder)
54|Page

The European Commission's support far the production of this publication does not constitute an endorsement of the

comtents, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made al the information contained thersin

https://www.w3schools.com/sql/sql_isnull.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

Here we can see that if any of the UnitsOnOrder values are null, the result will also be

FROM Products;

null.
Let’'s see how we can overcome this issue.

In MySQL, you can use the ISNULL() function that lets you return an alternative value
if an expression is null:

SELECT ProductName, UnitPrice * (UnitsinStock + IFNULL(UnitsOnOrder, 0))
FROM Products;

Or we can use the COALESCE() function:
SELECT ProductName, UnitPrice * (UnitsinStock + COALESCE(UnitsOnOrder, 0))
FROM Products;

In SQL Server, the ISNULL() function does the same thing as in MySQL.:
SELECT ProductName, UnitPrice * (UnitsinStock + IFNULL(UnitsOnOrder, 0))
FROM Products;

In MS Access IsNull() function returns TRUE(-1) if the expression is a null value,
otherwise FALSE (0):

SELECT ProductName, UnitPrice * (UnitsIinStock + IIF(IsNull(UnitsOnOrder), O,
UnitsOnOrder))

FROM Products;

In Oracle, the NVL() function does the same thing:
SELECT ProductName, UnitPrice * (UnitsinStock + NVL(UnitsOnOrder, 0))
FROM Products;

SQL Comments

SQL Comments explain SQL statement sections or prevent their execution.

55|Page

suel O @ i .z)‘,,44607@(3

pean Commisson's support lor the production of this pubdicastion does not censtitute an endorsement of the

s, which reflect the wews only of the authors, and th ssion cannot be held responsible for ar y use which may

be made al the information contained theran

Co-funded by the
Erasmus+ Programme
of the European Union

Note that the examples in this section are not supported in Firefox and Microsoft Edge,

which are Microsoft Access databases. Comments are generally not supported in
Microsoft Access databases.

Single line comments in SQL start with - - (two dashes):
--Select all:
SELECT * FROM Customers;

Or it can be used like this to ignore the end of the line:
SELECT * FROM Customers -- WHERE City='Berlin’;

Or to ignore a statement:
--SELECT * FROM Customers;
SELECT * FROM Products;

Multiple-line comments start with /* and end with */. Any text written between these

two will be ignored.

Example:

[*Select all the columns

of all the records

in the Customers table:*/
SELECT * FROM Customers;

To ignore part of a statement, you can also use /**/.

Example 1:
SELECT CustomerName, /*City,*/ Country FROM Customers;

Example 2:
SELECT * FROM Customers WHERE (CustomerName LIKE 'L%'
OR CustomerName LIKE 'R%' /*OR CustomerName LIKE 'S%'

56 |Page

29 G 5 @ - [IZAVG) kg

he European Commisson's support for the production of this publication does not constitute an endorsement of

SION Cannot be h n,h, responsible for an y use which may

which reflect the wews only of the authors, and the Come

be made af the infarmation contained therain

Co-fundad by the
</> Erasmus+ Programme
codedsp of the European Union

OR CustomerName LIKE 'T%"*/ OR CustomerName LIKE "W%")
AND Country="USA'
ORDER BY CustomerName;

SQL Operators

Arithmetic Operators used in SQL:

Operator Description
- o0
Subtract
. Mttty
Dovicse
- Moduse

Table 46 - Arithmetic Operators (Source: https://www.w3schools.com/sgl/sql_operators.asp)

Bitwise operators used in SQL:

Operator Description

B Bitwise AND

| Bitwis2 OR

e Bitwise exclusive OR

Table 47 — Bitwise operators (Source: https://www.w3schools.com/sgl/sgl_operators.asp)

57|Page

= 308l & 5ilss @ i BN ZAUG) 4 i o s

The European Commission's support far the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commyssion cannat be held responsible for any use which may
be made af the infarmation contained therain

https://www.w3schools.com/sql/sql_operators.asp
https://www.w3schools.com/sql/sql_operators.asp

Co-funded by the
Erasmus+ Programme
of the European Union

Comparison operators used in SQL:

Operator Description

- Equal to

> Graater than

< Less than

> Greater than or equal to
<m Less than or equal to
<> Not equal to

Table 48 — Comparison operators (Source: https://www.w3schools.com/sqgl/sgl_operators.asp)

Compound operators used in SQL:

Operator Description

- Add equals

- Subtract equals

‘s Multiply equals

= Divide equais

= Moduio egquals

A= Btwise AND equals
Sem Bitwise excdlusive equals
= Bitwise OR equals

Table 49 - Compound operators (Source: https://www.w3schools.com/sql/sgl_operators.asp)

58| Page

=808l & sk @ i E)ZAUG) 44w 8. o

The European Commission's support far the production of this publication does not constitute an endorsement of the
comtents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made af the infarmation contained thersin,

https://www.w3schools.com/sql/sql_operators.asp
https://www.w3schools.com/sql/sql_operators.asp

Co-funded by the
</> Erasmus+ Programme
codedsp of the European Union

Logical operators used in SQL:

Operator Description

ALL TRUE if all of the subquery values meet the condition
AND TRUE f all the conditions separated by AND is TRUE
ANY TRUE if any of the subquery values meet the condition
BETWEEN TRUE If the operand is within the range of comparisons
EXISTS TRUE If the subquery returns one or more records

IN TRUE If the operand is agual to one of a list of expressions
LIKE TRUE If the operand matches a pattern

NOT Displays a record If the condition(s) is NOT TRUE

OR TRUE If any of the conditions separated by OR Is TRUE
SOME TRUE If any of the subguery values meet the condition

Table 50 - Logical operators (Source: https://www.w3schools.com/sqgl/sgl _operators.asp)

SQL Database

As we have mentioned in the previous section that was dedicated to the basic
statements used in SQL, this programming language is mainly used for relational
databases. Therefore, in this section, we will learn how to create a database, modify

it, and manipulate it with SQL.

Let’s start simple, and we will build into slightly more complicated statements.
SQL Create DB

The CREATE DATABASE statement creates a new SQL database.

Syntax:
CREATE DATABASE DatabaseName;
59|Page

=80l & e @ i E)ZAVUG) 448, o,

The European Commission's support far the production of this publication does not constitute an endorsement of the
contents, which reflect the wiews only of the authors, and the Commssion cannot be held responsible for any use which may
be made af the information contained therein

https://www.w3schools.com/sql/sql_operators.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

Note: Always remember that the name of the database should be unique within the

Relational Database Management System (RDMS) that you are using, and make sure
that you have admin privileges before creating any database.

Let's say you want to create a test database. You would use the following statement:

CREATE DATABASE testDB;

SQL Drop DB
The DROP DATABASE statement deletes an existing SQL database.
DROP DATABASE DatabaseName;

Before you delete the database, make sure that you don’t need any of the information
that it contains because it completely deletes it.

Remember the database that we just created called “testDB”? Now we are going to
delete it.

Example:
DROP DATABASE testDB;

SQL Backup DB

The BACKUP DATABASE statement does a complete backup on an existing SQL
database.

To use this statement, you need to provide two things: the name of the database and
the file path.

BACKUP DATABASE DatabaseName
TO DISK = ffilepath’

Example:
BACKUP DATABASE testDB

60|Page

p‘ sual t) wr’owm@; Innovatic “.Z—_)“,;44¢607G\é

he European Commisson's support [I:u; oduction of this publication does not constitute an endorsement (

which reflect the wews only of the authors, and the ssion cannot be held responsible for any use which may

be made af the infarmation contained therain

Co-fundad by the
Erasmus+ Programme
of the European Union

Note: To avoid technical problems, it is better to back up the database to a different

TO DISK = 'D:\backups\testDB.bak’;

drive than the one the existing database is on.

There is also another option where you perform a differential backup based on
changes that have been made since the last complete database backup. This type of
backup also reduces the backup time.

To do this, you follow this syntax:
BACKUP DATABASE DatabaseName
TO DISK = ffilepath'

WITH DIFFERENTIAL;

Example:

BACKUP DATABASE testDB

TO DISK = 'D:\backups\testDB.bak'
WITH DIFFERENTIAL,;

SQL Create Table
The CREATE TABLE statement creates a new table in a database.

Syntax:

CREATE TABLE table_name (
column1l datatype,
column2 datatype,
column3 datatype,

);
In this statement, you need to specify the names of the columns and the type of

data that the column will contain.

61|Page

"A sugl {3 N powm @_. [rmu.‘a{ on . Z *)111/44&07% -

Iu_‘L_ﬂ pean Commisson's support far the production of this pubdication does not sttute an endorse

comtents, which reflect the wews only of the authors, and the Commessian cans JH !,’l,ll,.h’;.,l\ll sible for an y use which may
be made ol 'Iv-f m'w mation contained therain

Co-funded by the
Erasmus+ Programme
of the European Union

There are many data types such as integer, date or varchar. Depending on the type

of data that you want to store, you choose the most suitable option. For instance, if
you have a column named “Date of Birth”, then you would probably choose the Date
as the data type.

Example:

CREATE TABLE Persons (
PersoniD int,
LastName varchar(255),
FirstName varchar(255),
Address varchar(255),
City varchar(255)

);

This example will create a table with the name Persons and will contain 5 columns.

The PersonID will contain an integer (int); the columns LastName, FirstName,
Address, and City will contain characters with a maximum length of 255.

The table will look something like this without any data:

Poramnil) | asiMame D Adiliens Ciry

Table 51 - Empty table in CREATE TABLE Example (Source:
https://www.w3schools.com/sql/sql create_table.asp)

You can also create a table by using another table and choosing which columns you
want in the new table. Keep in mind that the data of the existing table will fill the entries
of the new table.

The syntax is as follows:

CREATE TABLE new_table_name AS
SELECT columnl, column2,...

FROM existing_table_name
62|Page

29 G 5 @ - [IZAVG) kg

he European Commisson's support for the production of this publication does not constitute an endorsement of

SION Cannot be h n,h, responsible for an y use which may

which reflect the wews only of the authors, and the Come

be made af the infarmation contained therain

https://www.w3schools.com/sql/sql_create_table.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

WHERE;
As you have learnt in the previous section:

e SELECT specifies the columns from the existing table,
o FROM specifies the name of the existing table, and

o WHERE can be used if you want a set of records that fulfil a specified condition.

Example:

CREATE TABLE TestTable AS
SELECT customername, contactname
FROM customers;

SQL Drop Table

Similar to the DROP DATABASE statement that we saw earlier, the DROP TABLE
statement deletes an existing table in a database.

Remember that you need to be sure that you do not need any of the information
contained in a table before deleting it.

Syntax:
DROP TABLE TableName;

Example:
DROP TABLE Persons;

You can also choose to delete the data contained in a table, but not the table itself.

Maybe you created a new table from an existing table that has the structure that you
want, but you want to add completely new entries. That is where TRUNCATE TABLE
is useful.

Syntax:
TRUNCATE TABLE TableName;

Example:
63|Page

- sual 5_) wmwm @. Innovation -Z—_)4“4M% ==

pan does ne titute an endorsement of
CAannor be h n,h,. 1espo:

be made af the infarmation contained therain

Jropean Commissan's support far the production of this p

nsible for any use which may

ents, which reflect the wews only of the authors, and the Cor

Co-fundad by the
Erasmus+ Programme
of the European Union

TRUNCATE TABLE Persons;
SQL Alter Table

The ALTER TABLE statement can add, delete or modify columns in an existing table.
Also, it can be used to add and drop constraints on an existing table.

Let’s see the syntax of adding a column first:
ALTER TABLE TableName

ADD column_name datatype;

This is familiar to how we created a table by specifying the name of the column and
the type of data to be contained in that column.

Example:
ALTER TABLE Customers
ADD Email varchar(255);

To delete a column in a table, as we have seen before, you use the DROP statement.

Keep in mind that some database systems do not allow for users to delete a column.
Syntax:

ALTER TABLE TableName

DROP COLUMN ColumnName;

As an example, let’s delete the column that we created:
ALTER TABLE Customers
DROP COLUMN Email;

To change the data type of a column, you can use the following statements depending
on the RDBMS that you are using:

e ALTER COLUMN (for SQL Server/MS Access);
e MODIFY COLUMN (for My SQL/ Oracle prior to version 10G);
e MODIFY (for Oracle version 10G and later).

64|Page

suel O @ i .z)‘,,44607@(3

pean Commisson's support lor the production of this pubdicastion does not censtitute an endorsement of the

s, which reflect the wews only of the authors, and th

ssion cannot be held responsible for any use which may

be made al the information contained theran

Co-funded by the
Erasmus+ Programme
of the European Union

ALTER TABLE TableName
ALTER COLUMN ColumnName datatype;

Note that the second statement is the one that changes depending on the RDBMS
that you are using from ALTER COLUMN to MODIFY COLUMN or MODIFY. The rest
stays the same.

Let's see an example to understand this statement a bit better. The table underneath

is the “Persons” table and contains information about different people.

10 LastName PhstNanw Adddnas City

: Hansen Ola Timectatyn 10 Serxines
Svendion Tove Borgwn 23 Sarcines

) Pattornen xan storge 20 Stavanger

Table 52 - ALTER TABLE Example (Source: https://www.w3schools.com/sgl/sgl alter.asp)

As an example, let’s say that we wanted to add a column named “DateofBirth” in this
table. We will use the following statement:

ALTER TABLE Persons
ADD DateofBirth date;

The new column that we added to the table has the data type of date, which means
that it stores data in a date format. Underneath, you can see the table with the new
column added.

1o LastName Pl siName Addross City OateBith
L] Hansan Ota Timetenn 10 sandnes

Svendeon Tove Borgwn 23 Sandnes
) Petteryen Kar Sworgt 20 Stavanger

Table 53 - ALTER TABLE Example (Source: https://www.w3schools.com/sal/sql_alter.asp)

However, what if you changed your mind and wanted to change the data type of the
new column, then you can use the ALTER COLUMN statement. For example, we can

65|Page

'aSllBl {3 wmwm& ,,mw,n.z ;:)‘“/4@7@;;._

The LJI opean Commisson's support for the production this pubdication does not constitute an endorsement of the

comtents, which reflect the wews only of the authors, and th SSion Cannot be lnvh_, responsible for any use which may

be made al the information contained thersin

https://www.w3schools.com/sql/sql_alter.asp
https://www.w3schools.com/sql/sql_alter.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

change the newly added column’s type from date to year. To do this, use the following

statement:
ALTER TABLE Persons
ALTER COLUMN DateofBirth year;

The year data type holds a year in two- or four-digits format.
To delete the column that we just altered, we use the DROP COLUMN statement.
ALTER TABLE Persons

DROP COLUMN DateofBirth;

Our table will go back looking the way it did in the beginning.

1 LastMame FustMame AdSiess Oy
L = Temstesn 10 Sancmes
Sverdr Toue forgmn 23 Sangres

{
§

o Starge 20 Staaanger

Table 54 - ALTER TABLE Example (Source: https://www.w3schools.com/sgl/sql alter.asp)

SQL Constraints

SQL Constraints are used when the table is created with the statement CREATE
TABLE or after the table is created with the statement ALTER TABLE.

Syntax:

CREATE TABLE table_name (
columnl datatype constraint,
column2 datatype constraint,
column3 datatype constraint,

66 |Page

= 806l &5 s @ i EIZAUG) 4 Ao 8§

The European Commission's support far the production of this publication does not constitute an endorse

o @GP

ent of the
comtents, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made al the information contained thersin

https://www.w3schools.com/sql/sql_alter.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

Constraints are used to specify a set of rules and restrictions that apply to a column or

a table. They are used to ensure the integrity, accuracy, and reliability of the data. If
the constraints are applied to a table, then all columns need to adhere to these

constraints.

The following constraints are the ones that are most commonly used:
e NOT NULL
e UNIQUE
e PRIMARY KEY
e FOREIGN KEY
e CHECK
e DEFAULT
e CREATE INDEX

We will go through each of these constraints to explain their usage and syntax with

examples.

SQL Not Null

In SQL, columns can hold null values by default. The NOT NULL constraint is used to
avoid null values in columns. This is particularly important to ensure that when a new
entry is added to a table all the necessary fields are filled.

As an example, let’s say that we want to create a table named “Persons” and we want
to ensure that the columns “ID”, “LastName”, and “FirstName” do not hold any null
values:
CREATE TABLE Persons (

ID int NOT NULL,

LastName varchar(255) NOT NULL,

FirstName varchar(255) NOT NULL,

Age int

67 |Page

p‘ sual t) wr’owm@; Innovatic “.Z—_)“,;44¢607G\é

van does not titute an endorsement of

annorbe h n,h,. 1espo:

pean Commisson's support far the production of this publics

WS, which reflect the wews only of the authors, and the Come nsible for any use which may

be made af the infarmation contained therain

Co-fundad by the
Erasmus+ Programme
of the European Union

If, for some reason, you want to alter an already existing table to add constraints, you

can use the following statement:
ALTER TABLE Persons
MODIFY Age int NOT NULL;

SQL Unique

The UNIQUE constraint is used to ensure that all values stored in a column are unique
among the rows in a table. To make this clearer, think of the variable ID. You wouldn’t
want two people to have the same ID, therefore you would use the constraint UNIQUE

on this occasion.

SQL Server / Oracle / MS Access:
CREATE TABLE Persons (
ID int NOT NULL UNIQUE,
LastName varchar(255) NOT NULL,

FirstName varchar(255),
Age int

);

My SQL.:

CREATE TABLE Persons (
ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int,
UNIQUE (ID)

As you can see, depending on the RDBMS that you are using, there are a few
adjustments on where the UNIQUE constraint is put in the code.

68|Page

"A sugl {3 N powm @_. [rmu.‘a{ on . Z *)111/44&07% -

Iu_‘L_ﬂ pean Commisson's support far the production of this pubdication does not sttute an endorse

comtents, which reflect the wews only of the authors, and the Commessian cans JH !,’l,ll,.h’;.,l\ll sible for an y use which may
be made ol 'Iv-f m'w mation contained therain

Co-fundad by the
Erasmus+ Programme
of the European Union

If you want to name or define a UNIQUE constraint on multiple columns, use the

following:
CREATE TABLE Persons (
ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int,
CONSTRAINT UC_Person UNIQUE (ID,LastName)
);
You can also add a UNIQUE constraint after the table has been created by using the
ALTER TABLE statement that we learnt earlier.

MySQL / SQL Server / Oracle / MS Access:
ALTER TABLE Persons
ADD UNIQUE (ID);

If you also want to name and define a UNIQUE constraint on multiple already existing
columns, you use the following statement:

ALTER TABLE Persons

ADD CONSTRAINT UC_Persons UNIQUE (ID, LastName);

To delete the UNIQUE constraint, you can use the following statement:

My SQL:
ALTER TABLE Persons
DROP INDEX UC_Persons;

SQL Server/Oracle/ MS Access:
ALTER TABLE Persons
DROP CONSTRAINT UC_Persons;

69|Page

"A sugl {3 N powm @_. [rmu.‘a{ on . Z *)111/44&07% -

Iu_‘L_ﬂ pean Commisson's support far the production of this pubdication does not sttute an endorse

comtents, which reflect the wews only of the authors, and the Commessian cans JH !,’l,ll,.h’;.,l\ll sible for an y use which may
be made ol 'Iv-f m'w mation contained therain

Co-funded by the
Erasmus+ Programme
of the European Union

The PRIMARY KEY constraint is used to uniquely identify each row or record in a

SQL Primary Key

table. Note that primary keys must contain unique values, but cannot contain null

values.

A table can only have ONE primary key and that primary key can consist of one or

multiple columns.

SQL Server/Oracle/MS Access:

CREATE TABLE Persons (
ID int NOT NULL PRIMARY KEY,
LastName varchar(255) NOT NULL,
FirstName varchar(255),

Age int

MySQL:
CREATE TABLE Persons (
ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int,
PRIMARY KEY (ID)

The following example allows you to name and define a PRIMARY KEY constraint on
multiple columns:
CREATE TABLE Persons (

ID int NOT NULL,

LastName varchar(255) NOT NULL,

70|Page
= 89l &5 sz ZAUG)
: LEINS a iy 1 a £
G INPOWER B%% Innovation =) 444 M 2R P
The European Commission's support far the production of this publication does not constitute an endorsement of the

comtents, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made al the information contained thersin

Co-funded by the
Erasmus+ Programme
of the European Union

FirstName varchar(255),
Age int,
CONSTRAINT PK_Person PRIMARY KEY (ID,LastName)

Note that the PRIMARY KEY is still one, but the value of the primary key encompasses

two columns.

You can also create a PRIMARY KEY constraint on an existing table by using the
following statement:

ALTER TABLE Persons

ADD PRIMARY KEY (ID);

To add and define a PRIMARY KEY constraint on an existing table, use the following
statement:

ALTER TABLE Persons

ADD CONSTRAINT PK_Persons PRIMARY KEY (ID, LastName);

To drop a PRIMARY KEY constraint, use the following statements according to your
RDBMS.

MySQL:
ALTER TABLE Persons
DROP PRIMARY KEY;

SQL Server / Oracle / MS Access:
ALTER TABLE Persons
DROP PRIMARY KEY;

71|Page
= 8l &5 s @ o ZAUG) 4
|} ENS AW\ Corvtar for Soou a i r s Ay
Q INPOWER &5 Innovation L) i ffarad TR
The European Commission's support far the production of this publication does not constitute an endarsement of the

comtents, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made af the infarmation contained therain

Co-funded by the
Erasmus+ Programme
codedsp of the European Union

SQL Foreign Key

The FOREING KEY represents the columns of a table that are linked to a primary key
in another table. The table that has a foreign key is called the child table, whereas the

table that has the primary key is called the referenced or parent table.

This type of constraint is used to prevent any actions that would destroy links between
parent and child tables.

Let’s consider the following two tables:

Petsonid LastNane Pl stNanee =

: "o zer s 30
Leenducr Srve b3)

) Mertersen o o2

Table 55 - Persons table in FOREING KEY Example (Source:

https://www.w3schools.com/sal/sal foreignkey.asp)

OrdesID OrderNumber PersonlD
1 7785 3
2 44678 3
3 22456 2
- 24562 i

Table 56 - Orders table in FOREING KEY Example (Source: https://www.w3schools.com/sqgl/sgl foreignkey.asp)

These two tables are linked by the column “PersonID” that is found in both tables.
Now, the primary key is located in the Persons table and the foreign key is the
“PersonID” in the Orders table.

72|Page
} ITIZENS g Cortter B Soow A4 ¥ oo
£ Q iVPOWER BRE Jnnovation R) AT g == ap
saserme
The European Commission's support far the production of this publication does not constitute an endorsement of the

comtents, which reflect the views only of the authors, and the Commission cannot be held responsible
be made af the infarmation contained therain

or any use which may

https://www.w3schools.com/sql/sql_foreignkey.asp
https://www.w3schools.com/sql/sql_foreignkey.asp

Co-funded by the
Erasmus+ Programme
of the European Union

The FOREIGN KEY constraint works by preventing the input of invalid data in the

foreign key column, because it is linked with the parent table and its values need to be
identical.

To use the FOREIGN KEY constraint when creating a table, you can use the following
statement according to your RDBMS.

SQL Server / Oracle / MS Access:
CREATE TABLE Orders (
OrderID int NOT NULL PRIMARY KEY,
OrderNumber int NOT NULL,
PersonID int FOREIGN KEY REFERENCES Persons(PersonID)

My SQL:
CREATE TABLE Orders (
OrderID int NOT NULL,
OrderNumber int NOT NULL,
PersonlID int,
PRIMARY KEY (OrderID),
FOREIGN KEY (PersonID) REFERENCES Persons(PersonID)

This statement linked the Orders table to the Persons table with the FOREIGN KEY
constraint based on PersonID column.

SQL Check

The CHECK constraint is used to specify the values allowed in a column or in certain
columns of a table based on values found in other columns of the same row.

Example of CHECK constraint on CREATE TABLE

73|Page

p‘ SIIEI {3 IN Powm @. [r” oV .~t on .2—3)11445%7% el

e European Commisson's support far the production of this publication does not constitute an endorsemer
which reflect the wews only of the authors, and the Commession cannot t ‘,h,h,.hu.‘,v‘_n sible for any use which may

be made ol !Iw»; .'»f'vv"'dlu:.'-'u Jntained theran

Co-funded by the
Erasmus+ Programme
of the European Union

The following example is used to ensure that a person is not under the age of 18, so
the CHECK constraint is added to the “Age” column.

MySQL:
CREATE TABLE Persons (
ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int,
CHECK (Age>=18)

SQL Server / Oracle / MS Access:
CREATE TABLE Persons (
ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int CHECK (Age>=18)
)i
If you want to name a CHECK constraint and use the constraint on multiple columns,

you can use the following statement.

MySQL / SQL Server / Oracle / MS Access:
CREATE TABLE Persons (
ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int,
City varchar(255),
CONSTRAINT CHK_Person CHECK (Age>=18 AND City= ‘Sandnes’)

298 & s @ oo FIZAUG) 44
- slm Q i POWER e Innovation : Aﬁ AR g

The European Commission's support far the production of this publication does not constitute an endorsement of

the
comtents, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made af the infarmation contained therain

Co-fundad by the
Erasmus+ Programme
of the European Union
Example of CHECK constraint on ALTER TABLE
To create a constraint on an already existing table, use the following statement.

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons

ADD CHECK (Age>=18);

To name a constraint and create it on multiple columns, you can use:
ALTER TABLE Persons

ADD CONSTRAINT CHK_Person CHECK (Age>=18 AND City= ‘Sandnes’);

Example of DROP a CHECK constraint

To eliminate a CHECK constraint, you can use the following according to the RDMBS.

SQL Server / Oracle / MS Access:
ALTER TABLE Persons
DROP CONSTRAINT CHK_PersonAge;

MySQL:
ALTER TABLE Persons
DROP CHECK CHK_PersonAge;

SQL Default

The DEFAULT constraint is used to specify a default value for a column. If there are

no other values specified, the default value will be added to all new records.

Example of DEFAULT constraint on CREATE TABLE
The following example adds a default value to the City column when the Persons table
is created:
CREATE TABLE Persons (
ID int NOT NULL,
LastName varchar(255) NOT NULL,

75|Page

"A sugl {3 N powm @_. [rmu.‘a{ on . Z *)111/44&07% -

Iu_‘L_ﬂ pean Commisson's support far the production of this pubdication does not sttute an endorse

comtents, which reflect the wews only of the authors, and the Commessian cans JH !,’l,ll,.h’;.,l\ll sible for an y use which may
be made ol 'Iv-f m'w mation contained therain

Co-fundad by the
Erasmus+ Programme
of the European Union

FirstName varchar(255),
Age int,
City varchar(255) DEFAULT 'Sandnes'

This constraint can also be used to insert system values with functions such as
GETDATE():
CREATE TABLE Orders (

ID int NOT NULL,

OrderNumber int NOT NULL,

OrderDate date DEFAULT GETDATE()

Example of DEFAULT constraint on ALTER TABLE
In this example, the column “City” is used to create a DEFAULT constraint when we

are altering an already existing table.

MySQL:
ALTER TABLE Persons
ALTER City SET DEFAULT 'Sandnes’;

SQL Server:

ALTER TABLE Persons

ADD CONSTRAINT df_City
DEFAULT 'Sandnes' FOR City;

MS Access:
ALTER TABLE Persons
ALTER COLUMN City SET DEFAULT ‘Sandnes’;

Oracle:
ALTER TABLE Persons
76 |Page

= 8l &5 e @ i EYZAUG) 4 4icn¥=. . »

The European Commission's support for the production of this publication does not constitute an endorsement of the

comtents, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made al the information contained thersin

Co-funded by the
Erasmus+ Programme
of the European Union

MODIFY City DEFAULT 'Sandnes’;

Example of DROP a DEFAULT constraint
MySQL:

ALTER TABLE Persons

ALTER City DROP DEFAULT;

SQL Server / Oracle / MS Access:
ALTER TABLE Persons
ALTER COLUMN City DROP DEFAULT;

SQL Index

The CREATE INDEX statement creates an index on a table. Indexes are useful when

you want to retrieve data more quickly.

Please note that tables with indexes take more time to update in comparison to tables
without. Therefore, it is suggested to only create indexes on columns that are
frequently searched.

To CREATE INDEX on a table where duplicate values are allowed, use the following
syntax:

CREATE INDEX index_name

ON table_name (columnl, column2, ...);

To CREATE UNIQUE INDEX on a table where duplicate values are not allowed, use
the following syntax:

CREATE UNIQUE INDEX index_name

ON table_name (columnl, column2, ...);

Keep in mind that creating indexes varies from database to database, so always check

the syntax to create one in your database.

77|Page

p‘ SIIEI {3 IN Powm @. [r” oV .~t on .2—3)11445%7% el

e European Commisson's support far the production of this publication does not constitute an endorsemer
which reflect the wews only of the authors, and the Commession cannot t ‘,h,h,.hu.‘,v‘_n sible for any use which may

be made ol !Iw»; .'»f'vv"'dlu:.'-'u Jntained theran

Co-fundad by the
Erasmus+ Programme
of the European Union

In this example, we are creating an index on the LastName column by specifying the

Examples of CREATE INDEX

name idx_lastname:
CREATE INDEX idx_lastname
ON Persons (LastName);

To create an index on a combination of columns, use the following statement:
CREATE INDEX idx_pname
ON Persons (LastName, FirstName);

If you want, you can add more columns in the parenthesis.

Examples of DROP INDEX
If you want to delete an index, use the following statement according to your RDBMS.

MS Access:
DROP INDEX index_name ON table_name;

SQL Server:
DROP INDEX table_name.index_name;

DB2/Oracle:
DROP INDEX index_name;

MySQL:
ALTER TABLE table_name
DROP INDEX index_name;

78| Page

= 806l &5 s @ i EIZAUG) 4 Ao 8§

The European Commission's support far the production of this publication does not constitute an endorsemer

o @GP

t of the
comtents, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made al the information contained thersin

Co-fundad by the
Erasmus+ Programme
of the European Union

Auto-increment is used to generate unique numbers automatically when a new record

SQL Auto Increment

is entered into a table. This is usually used on the primary key field in order to ensure
that no one person has the same ID.

This feature uses different syntax in MySQL, SQL Server, Access and Oracle.
Therefore, we will be going through each of these to explain how to use Auto-

Increment.

MySQL:

CREATE TABLE Persons (
Personid int NOT NULL AUTO_INCREMENT,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int,
PRIMARY KEY (Personid)

In MySQL, AUTO_INCREMENT adds the auto-increment feature and by default, the
value set is 1 and it goes up by 1 each time.

If you would like the sequence to start from a different value, use the following
statement:
ALTER TABLE Persons AUTO_INCREMENT=100;

If you enter a new record into the Persons table, you will not have to specify a value
for the “PersonID” column since it will be generated automatically:

INSERT INTO Persons (FirstName,LastName)

VALUES ('Lars','Monsen’);

SQL Server

79|Page

p‘ sual t) wr’owm@; Innovatic “.Z—_)“,;44¢607G\é

van does not titute an endorsement of

annorbe h n,h,. 1espo:

pean Commisson's support far the production of this publics

WS, which reflect the wews only of the authors, and the Come nsible for any use which may

be made af the infarmation contained therain

Co-fundad by the
Erasmus+ Programme
of the European Union

We are following the same example as above, where we use the “Personsid” column

as the primary key in the Persons table:

CREATE TABLE Persons (
Personid int IDENTITY(1,1) PRIMARY KEY,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int

In SQL Server, the auto-increment feature uses the keyword IDENTIFY to be
activated. The two values in the parenthesis indicate (starting value, adding value for
each new record). It will start at 1 and go up by 1 each time a new record is entered.

If you wanted to change the starting value to 10 and to add 5 each time a new record
is added, you would write it like this IDENTIFY (10,5).

When entering new records, you do not need to specify the Personsid. It will be

automatically generated as in the example above.

MS Access

CREATE TABLE Persons (
Personid AUTOINCREMENT PRIMARY KEY,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int

MS Access uses AUTOINCREMENT keyword to activate the auto-increment feature.
Similar to the other two, the starting value is one and it adds up by one each time a

record is added.

80|Page

suel O @ i .z)‘,,44607@(3

pean Commisson's support lor the production of this pubdicastion does not censtitute an endorsement of the

s, which reflect the wews only of the authors, and th

ssion cannot be held responsible for any use which may

be made al the information contained theran

Co-fundad by the
Erasmus+ Programme
of the European Union

You can specify different values such as 10 for starting value and 5 for each addition
with AUTOINCREMENT(10,5).

Again, note that each time we add a new record, we do not need to specify the

Personid value. It is generated automatically.

Oracle

In Oracle, the code is a bit trickier. To create an auto-increment field, you need to
create a sequence of numbers:

CREATE SEQUENCE seq_person

MINVALUE 1

START WITH 1

INCREMENT BY 1

CACHE 10;

This sequence creates a sequence object named “seq_person”, sets the minimum
value to start from (which is 1 in this instance), then specifies the increment by 1. The
cache specifies how many sequence values should be stored in memory for faster
access.

Unlike the previous examples, to enter a new record into the Persons table, you need
to use the nextval function. This function is used to retrieve the next value from the

sequence object that we created.

INSERT INTO Persons (Personid,FirstName,LastName)
VALUES (seq_person.nextval,'Lars','Monsen');

Here, we can see that the Personid column is selected to be assigned the next number

from the sequence object that we created called “seq_person”.

8l|Page

sual Q)wnowm@, |,,_.ﬂ,,.z)“‘,4&&07@\-3”

@ an endorsement of the

opean Commisson's suppart (ar the production of this pubdication does not constitut

ts, which reflect the wews only of the authors, and the € n cannot be held responsible for ;

be made al the information contained theran

Co-fundad by the
Erasmus+ Programme
of the European Union

One of the most challenging parts when working with dates is to ensure that the format

SQL Dates

of the date you are trying to enter is the same with the format of the date column in the
database.

It is important to note that data that contains only date portions will work as expected
in queries. However, if there is a time portion, things get a bit more complicated.

Date Data types found in MySQL:
e DATE - format YYYY-MM-DD
e DATETIME - format: YYYY-MM-DD HH:MI:SS
e TIMESTAMP - format: YYYY-MM-DD HH:MI:SS
e YEAR -format YYYY or YY

Data types found in SQL Server:
e DATE - format YYYY-MM-DD
e DATETIME - format: YYYY-MM-DD HH:MI:SS
e SMALLDATETIME - format: YYYY-MM-DD HH:MI:SS
e TIMESTAMP - format: a uniqgue number

Keep in mind that the data types are chosen when you are creating a new table in your

database.
Ordes 1d ProductName OrderDate
i Getus 2008-13-33
Camwmibert Meriot J008-11-09
] Moyzarela & Guvann 2000-33-31
4 Mascatpane Fabioli 008-10-29

Table 57 - Orders table in Dates Example (Source: https://www.w3schools.com/sqgl/sgl_dates.as

82|Page
= 18l & e @ i EIZAUG) 4 A& . o

The European Commission's support far the production of this publication does not constitute an endorsement of the
comtents, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made al the information contained thersin

https://www.w3schools.com/sql/sql_dates.asp

Co-funded by the
</> Erasmus+ Programme
codedsp of the European Union

We will use the Orders table in our example to select the records with an OrderDate
of “2008-11-11".

Example:

SELECT *

FROM Orders

WHERE OrderDate='2008-11-11";

The expected result will look something like this:

Ocderla ProductName Ovdes Date
4 et et J008-313-13
) M3rerele & Gouav 2008-13-13

Table 58 - Result of OrderDate query in Dates Example (Source: https://www.w3schools.com/sqgl/sgl_dates.asp)

Note that two dates can be easily compared when there is no time stamp involved.

Suppose that you have the Orders table, but with a timestamp in the OrderDate

column.
Orderid ProductName OrderDate
1 Grmtust 20003333 133044
4 Camambert Merrot J008-15-09 1545 1
) Muzaarella di Glovarry J008-13-13 11:1008
“ Mascarpore Fabiod 2008-10-39 1498 9%

Table 59 - Orders table with timestamp in Dates Example (Source:

https://www.w3schools.com/sql/sql_dates.asp)

Here, if you attempted to use the same query as we used above:

SELECT *
FROM Orders
WHERE OrderDate='2008-11-11";

83|Page

s EI TIZENS Conttar for So0w Z ’
u Q iN POWER Innoxnhcv E _____JAM/4M ﬁ-rm

The European Commission's support far the production of this publication does not constitute an endc ent of the
coments, which reflect the views only of the authors, and the Commyssian cannot be held responsible for any use which may
be made af the infarmation contained therain

https://www.w3schools.com/sql/sql_dates.asp
https://www.w3schools.com/sql/sql_dates.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

You would get no result, because the query is not taking into account the time stamp.

It is recommended to not use time stamps unless you absolutely have to.
SQL Views

In SQL, a view is a virtual table of a result-set created from a specific query. A view is
useful when you want to view and present data through a combination of tables.

Syntax:

CREATE VIEW view_name AS
SELECT columnl, column2, ...
FROM table_name

WHERE condition;

Note that a view always shows up-to-date data since the database recreates the virtual

table, every time users query it.

Example to query all customers from Brazil:
CREATE VIEW [Brazil Customers] AS
SELECT CustomerName, ContactName
FROM Customers

WHERE Country = 'Brazil’;

To query the view:
SELECT * FROM [Brazil Customers];

Another example is to create a view that selects every product in the Products table
with a price that is higher than the average price:

CREATE VIEW [Products Above Average Price] AS

SELECT ProductName, Price

FROM Products

WHERE Price > (SELECT AVG(Price) FROM Products);

84|Page

p‘ sual t) wr’owm@; Innovatic “.Z—_)“,;44¢607G\é

Dan does not ¢ ttute
annorbe h n,h,. 1espo:

pean Commisson's support far the production of this public: n endorsement of

WS, which reflect the wews only of the authors, and the Come nsible for any use which may

be made af the infarmation contained therain

Co-fundad by the
Erasmus+ Programme
of the European Union

To query the view above, use the following statement:
SELECT * FROM [Products Above Average Price];

To update a view, use the CREATE OR REPLACE VIEW statement:
CREATE OR REPLACE VIEW view_name AS

SELECT columni, column2, ...

FROM table_name

WHERE condition;

The following example adds the “City” column to the Brazil Customer view that we
created earlier:

CREATE OR REPLACE VIEW [Brazil Customers] AS

SELECT CustomerName, ContactName, City

FROM Customers

WHERE Country = 'Brazil’;

To delete a view, use the DROP VIEW statement:
DROP VIEW view_name;

For example, suppose we want to delete the “Brazil customers” view:
DROP VIEW [Brazil Customers];

SQL Data Types

Generally, each column in a table requires a name and a data type.

An SQL developer will need to decide the type of data that will be stored inside each
column when creating a table. The data type is used for SQL to understand the data
that will be contained in each column and also how it will interact with the data.

Please keep in mind that data types might have different names in different databases.

85|Page

suel O @ i .z)‘,,44607@(3

pean Commisson's support lor the production of this pubdicastion does not censtitute an endorsement of the

s, which reflect the wews only of the authors, and th

ssion cannot be held responsible for any use which may

be made al the information contained theran

Co-funded by the
Erasmus+ Programme
of the European Union

Always check the documentation even if the name is the same because other details
might be different like the size.

Data types in MySQL (Version 8.0)
MySQL has three main data types: string, numeric, and date/time.

String Data Types

Data type Dwacription

DMAIN wae) AFTRED Moghh vt nng (Conh Gntam batter s, sesnbam, mnd specal chanclens). Tho sler paramataer
spmeilinn thie saasny benghhl i shaencters o b S O e 299 Dwfaub s §

VARC AN sire) A VARLABLE ol string [omn comtmn fetters, seanbers, wivt specil chsncten) The spe
ettt st tfion e staeniriuttt coturtes mngth i chatacters - Gan e o O S 6500

INATTY i) Faust bo THARD), it wtates My ighe sdeings The e priametod apecifies e oobumn Wagih in
bvivs. Oufmtt & |

WABDINARY(wipm) Frumt ba VARCHAILL St shorme himury Byle strings. The siew pacwersber speeciiion the smmeimam
colurrm Sergih in ivees

TINYRLOS o BLOWS (Minbey Latgs ODbijects]. Mas lungth 255 byles

TINYTEXY ke WG With & maeain leegth of 255 Chiwncters

TENT Ialie) Mot & i Wil @ s bty of 65 005 bytae

OB e P BLOBS (Banary Large Otectn) tabds up to 85,935 bytos of ds

MEOUMTEXY U & iy Wil @ trmentus lesgt® of 10, 777,218 tharntinrs

MEOTM M For BLOMS (oawy Large OUIeca) Wokde op to 16, 777,215 hytos of dmtn

LoNGTERY Phutde o wtimg with o oomsierutt bemghh of 4 204 B0T U5 chmuctnes

LOMOBLON Fuw LOS (It Lotge OUjoctnl. rubds up 10 4. 294,007,299 bvtus of dvia

ENUMOwal], pel2, wwit,) A wirieg nhiject thet s haww ardy nne wabos, chome fram o Bet of posside veluss, Tou tad et up

LR R Sl L Ll N Ll AL R LT R SR LR DN L R U L
Pvnie bl Thae wadiiom e bl o the on e piro seibier than

SET(wall, vald, waid] A wtring nldect thet san haes 0 ur srers valoes, chase Starm o et of peastils wamess. Yo s st
W00 B et e SET

Table 60 — String Data types (MySQL) (Source: https://www.w3schools.com/sgl/sal datatypes.asp)

86|Page

=88l & e @ i BIZAVG) 448, oo

The European Commission's support far the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made af the infarmation contained thersin,

https://www.w3schools.com/sql/sql_datatypes.asp

Co-funded by the

Erasmus+ Programme
of the European Union
Numeric Data Types

Anme g e e YO

N — ANS e e The v of eTs g auhe W st 01 see Yo e preaier e S @ sehe B | e e e
A b e

NI B A et Sarge & s TIW I LT ARageed it o S T T TRE s et ey e
e L

ALY R e R i e e L

b el be biin

LN e St e et s Sarn RITRE LTRD ahmreed ree o Sam 1 1e SMLA The aew peareeie spen e
W waasiem bawve o8 (whes w bbb

SR e . s e e I e I L R
e ibee Ve Mea st Saster wmRS ntat v LG

L B e e Bt 1wage 1 Sae LLATHEMGE 00 LIATREMET Lhmptad eage w P G be A7REM 1IN Ve s
. O e Sy Ve min g gy wAde ot

(LR R e Y

e AR AP Bt dhnge 4 T M1 - wr Armgans conpe te Hieee W ke

e e Wi e wney e adeh . AN

[IR @ Rearng piat msthan Ve e tertht o) YRS e s s e ar o Bale PR (e e et &
B e L

Vet e B Raaheg e rsthan PG e TR A e TR RARARA be e F A e DOLEAL Rt te cwe ey base
Bt e D b e e e s PRI W b T 5 A e e e e O

GO - & T s g . S e M ervhe # g et b e i e o Byt Sher the dnan
St e eI NNS o e 4 e et

DO TR -

DEOPa (- AT Bt SRR JAEE RTaan Then LNAR SAETART 08 BIRTA 15 RAENEA 8 e TR enaer o SRS St T R B
MEAOs 5 e € OO T W b pren iy gt b AW W BA e emrTert PeeTeed b 4 B S AeA e N
A T et s e e e

R - v, P e bl

Table 61 — Numeric Data types (MySQL) (Source: https://www.w3schools.com/sqgl/sgl_datatypes.asp)

Date/Time Data Types

Veta tppe Deoivipium
et B Ao Pwmar YV DO The spyentad sonys & freme L0 AL 0L W 11
T e LR A G et U b UL, TEVE D0 M T et g b e LIRE-OL 9] B0 U0 08 1

L R e T e e T T
By 1) W ert 200 wed free

IR T A Smmtany TR AT saeee me el s e earber o b0rEie maen e wees meat (UAM b6 b0 e L
St e ADARE 8 VIR RTINS P B e e
SRS e pateet o iy B 1T Lt AEE eeal 1900 La0 be e ey TIPSR T CLMATNT TRy TAMS
O PR CLMMENT TINERTIN 1 i cames Sehaane

I N A Pt e e TI Sl e 0 e A0 TR AW b TR N 0

tan g 0 P BT bl Wb R & et 8 Nevead 1] LG TR ped Ween
UL WL e 10T maa e pee b lad B Ve tes

Table 62 — Date/Time Data types (MySQL) (Source: https://www.w3schools.com/sal/sgl datatypes.asp)

87|Page

W CITIZENS —— x
; sml Q IN POWER Innovation Sl z—_JAUGi A/4M q:‘m @
The European Commission's support far the production of this publication does not constitute an endorsement of the

coments, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made af the infarmation contained thersin,

https://www.w3schools.com/sql/sql_datatypes.asp
https://www.w3schools.com/sql/sql_datatypes.asp

Co-funded by the
Erasmus+ Programme

of the European Union
Data Types in SQL Server
String Data Types
Lo o vy B -y . RO
il Tt ettt Seettr sy A RA I Se et Detomt e
-—thete e S Wiy AN hmarters 10 & e o s
“Ie e S S W ey LIT2 M1 AN ety 10019 ¢ sppnpe o Sovy
o e dl Sl L o L) e L S0 - e & ey
e -t (1sate & vy aaE Ve uree Tetsnd o i
—uihe v EEY W S wtng R e
R s T - e Ao e AR AL e
et VIR et S ering BB ¥ mm ae
—r O Ny Wy LN e
vy IR S peery ey L e
- S e ey By »
B —— e bemy Wy .

Table 63 — String Data types (SQL Server) (Source: https://www.w3schools.com/sgl/sgl datatypes.asp)

Numeric Data Types

Inata typee Doec 1gstian ater
» tager Sas sen e O 4w AL

trro Abwwn whrde rurmbwes from § s 255 L bym
e Alrwe wiade wardery hewese 12 9 et 12,781 2wt
" ASwd Wil Sarers INSweer I AT AR 638 wel 28T AE1AET . b
Lmget Ahvee winse wavtary Setwas 4 II3 371 ONLES PTIAM ewf GIZ1ITIONM 54 TTLNT 8 twtas
et Paat grutiantt aref seate martere LY e

Afme ruavmes froee 00 o 1w 20400 L

The 2 parmreier AEcIter (he TIEETLIT ISIE Sumder of SRS MRSt C0 Be starad (R f the et arst s e gt o the
PR DORTS o It e 8wt A0en |00 N Dt g 18

The % pirereie sebcmt e teaneraer reeviinr of SR8 AMered £ (e SO oF e Sl Sre. 8 Sl Be 4 veke e B

105 Datadt vaben b

Phet Fumen ol Sl reveey L e
Abwae mavdues fruee G000 o) M 1238 0

The 7 AEATEter DECHIE e TS ISUE ACATIw F DS TRAL I 50 EIRA (30T W the el mud D the e o the
SO DT It e 8 wen i § W ettt 18

The 3 porasutiur srbcmmd Tre reaestarm rhptdnr of SRR Wered B e (N of e shesed Sa0d & Soiil e & boha Pan &

155 Dutmst suton o 0
e Werutery e Pem T34 TR AR 1y 1L AR 04T 4 bwine
masey Wematiey dote e 977, TITIEL ARTATT 3000 06 FIZ 1LY IML A STT 3807 L
i) PRI (PTG A) T - O DR . e DR Y

The o parwrater Swales shuthar e bt dhaadd Al 4 o B Dyten Sl 10 benin 5 S apr bl aeed Saat(20) bndde

Biryte Vet Dufant venm of v 11

Rl Phateyg prarmes sunther tits e LA & 30 s TR - W 4 twtnn

Table 64 — Numeric Data types (SQL Server) (Source: https://www.w3schools.com/sal/sal datatypes.as

88|Page

" CITIZENS [——— UG ‘é : x
a s"al 0 AN PIANER @ Innovation el Z_A_J AR N = @
The European Commission's suppart far the production of this publication does not constitute an endorsement of the

coments, which reflect the views only of the authors, and the Commssion cannat be held responsible for any use which may
be made af the infarmation contained thersin.

https://www.w3schools.com/sql/sql_datatypes.asp
https://www.w3schools.com/sql/sql_datatypes.asp

Co-funded by the
Erasmus+ Programme

of the European Union
Date/Time Data Types
s typn Bosrwtien Starage
L Froew Jansary L, 1750 16 Daeretar 11 0008 wem o ey o 15 sulassaie 3 3w
Stwtered Proew benaary |, MBI to Decarater T2, FWVE st a sy of 100 senesesten s
et Frooe Jansary 1 1000 15 o £ 2005 with wn sspncy 3 | et 4.
e Sown o date wréy, e Mrwiary 1, 9001 M Ocerter 31 9990 2 tyees
e ST & L Iy 53 A aracy o A0S neeamcTada 36 by
Setetrrasthe The anrm os futatovad it Te ack¥teo o & tane tsre S 510 bares
] SOPW 8 VR TUTTT T ATE LETIMEY Enery UNTW 8 T 03 TRAIRT I TRTIREL. The ITTAMRIP eal Ik Sened Lmm
MO EERTA CREE MW G0 IR CATMIDONNE 1O TR TN RACD 2000 (T Saen 0Ep O TNTRENTE sRtabie

Table 65 — Date/Time Data types (SQL Server) (Source: https://www.w3schools.com/sgl/sgl_datatypes.asp)

Other Data Types

g Cwrigtion

3 _renet WE s uf TR D0 Sylen of ST o AETIE Sa0E GERA S5 ERT Tt TIRA B6E TTVEMMT)
YgeeTerttie Women & Pty Lrwien ideseder |1iUN,

. Wore I Nervidied date. Masvrar JoR

U WS ARAER T B AN A TR LTS A e

= BT & it et B3 et TTEReY

Table 66 — Other Data types (SQL Server) (Source: https://www.w3schools.com/sal/sal datatypes.asp)

Data Types in MS Access

ety Pea rartien e
b 1o o St T M Rt ood riers 235 Tweeces eeeven
e PRt 0 el A e et OF St B e b RN (e ter . e Sy canmed et & Saie Sel Meweaee

hew wo smerinane

v Wmn e entees e b s BE0 | e
[Wirs whian artams bevmess 31 M8 eed 12,40 1 hwies
oy Wt e s B 3 IAT AL AR e LAY AR M ey
g L ol L T e R iy
Dot 1aban frevimes Bogtey (rasl Wi Lasom ow Soiimas LRSI
[] O B S vircn e b 1 T e o vhete AR A 4 AN ARk THN Yew) DA WA iy " il

ey In sne

Arrueree D i e e L T T e LI i

P T Vb bo Agon @il Iioe " iwtes

e A gom Rl omn be Saoreend a0 UL Batihiae. b COVTIT I ot (A8 I et ants e el At [Pasved) |-
L 5) Naet M sens are wat st B T e ek

D kil Gt hate iien, madn, voina o b RLOOG (e (g Ohpecty W e top

Npawww Carmas w0a 50 alm (e Hdasny wep papms

Lawwas wind e e L Y T] # baies

Table 67 — Data types in Access (Source: https://www.w3schools.com/sql/sql_datatypes.as

89|Page

= 308l & s @ i E)ZAUG) 4 Arin¥=. o o

The European Commission's support far the production of this publication does not constitute an endorsement of the
comtents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may
be made of the infarmation contained therain,

https://www.w3schools.com/sql/sql_datatypes.asp
https://www.w3schools.com/sql/sql_datatypes.asp
https://www.w3schools.com/sql/sql_datatypes.asp

Co-fundad by the
Erasmus+ Programme
of the European Union

SQL References

SQL Keywords

Keyword Description

DD Adds a column in an existing table

ADD CONSTRAINT Adds a constraint after a table is already created

ALL Returns true if all of the subquery values meet the condition

ALTER Adds, deletes, or modifies columns in a table, or changes

the data type of a column in a table

ALTER COLUMN Changes the data type of a column in a table

ALTER TABLE Adds, deletes, or modifies columns in a table

AND Only includes rows where both conditions is true

ANY Returns true if any of the subquery values meet the
condition

AS Renames a column or table with an alias

90 |Page

= 806l &5 s @ i EIZAUG) 4 Ao 8§

The European Commission's support far the production of this publication does not constitute an endorsemer

t of the
comtents, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made al the information contained thersin

https://www.w3schools.com/sql/sql_ref_add.asp
https://www.w3schools.com/sql/sql_ref_add_constraint.asp
https://www.w3schools.com/sql/sql_ref_all.asp
https://www.w3schools.com/sql/sql_ref_alter.asp
https://www.w3schools.com/sql/sql_ref_alter_column.asp
https://www.w3schools.com/sql/sql_ref_alter_table.asp
https://www.w3schools.com/sql/sql_ref_and.asp
https://www.w3schools.com/sql/sql_ref_any.asp
https://www.w3schools.com/sql/sql_ref_as.asp

Co-funded by the
Erasmus+ Programme
of the European Union

Sorts the result set in ascending order

BACKUP DATABASE | Creates a backup of an existing database

BETWEEN Selects values within a given range

CASE Creates different outputs based on conditions

CHECK A constraint that limits the value that can be placed in a
column

COLUMN Changes the data type of a column or deletes a column in
atable

CONSTRAINT Adds or deletes a constraint

CREATE Creates a database, index, view, table, or procedure

CREATE DATABASE | Creates a new SQL database

CREATE INDEX Creates an index on a table (allows duplicate values)

CREATE OR | Updates a view
REPLACE VIEW

91|Page

= Sp8l &5 s @ i EJZAUG) 4 Aorin § =

The European Commission's support far the production of this publication does not constitute an endorsement of the

comtents, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made al the information contained thersin

https://www.w3schools.com/sql/sql_ref_asc.asp
https://www.w3schools.com/sql/sql_ref_backup_database.asp
https://www.w3schools.com/sql/sql_ref_between.asp
https://www.w3schools.com/sql/sql_ref_case.asp
https://www.w3schools.com/sql/sql_ref_check.asp
https://www.w3schools.com/sql/sql_ref_column.asp
https://www.w3schools.com/sql/sql_ref_constraint.asp
https://www.w3schools.com/sql/sql_ref_create.asp
https://www.w3schools.com/sql/sql_ref_create_database.asp
https://www.w3schools.com/sql/sql_ref_create_index.asp
https://www.w3schools.com/sql/sql_ref_create_or_replace_view.asp
https://www.w3schools.com/sql/sql_ref_create_or_replace_view.asp

Co-funded by the
Erasmus+ Programme
of the European Union

CREATE TABLE Creates a new table in the database
CREATE Creates a stored procedure
PROCEDURE
CREATE UNIQUE | Creates a unique index on a table (no duplicate values)
INDEX
CREATE VIEW Creates a view based on the result set of a SELECT
statement
DATABASE Creates or deletes an SQL database
DEFAULT A constraint that provides a default value for a column
DELETE Deletes rows from a table
DESC Sorts the result set in descending order
DISTINCT Selects only distinct (different) values
DROP Deletes a column, constraint, database, index, table, or
view
DROP COLUMN Deletes a column in a table
92|Page
'y CITiZENS AR taiter tor Soc F. 4 -
- sual Q iN POWER @ Innovaticn ZAUG_)"“ 411/4%07@ e
The European Commission's support far the production of this publication does not constitute an endorsement of the

comtents, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made af the infarmation contained therain

https://www.w3schools.com/sql/sql_ref_create_table.asp
https://www.w3schools.com/sql/sql_ref_create_procedure.asp
https://www.w3schools.com/sql/sql_ref_create_procedure.asp
https://www.w3schools.com/sql/sql_ref_create_unique_index.asp
https://www.w3schools.com/sql/sql_ref_create_unique_index.asp
https://www.w3schools.com/sql/sql_ref_create_view.asp
https://www.w3schools.com/sql/sql_ref_database.asp
https://www.w3schools.com/sql/sql_ref_default.asp
https://www.w3schools.com/sql/sql_ref_delete.asp
https://www.w3schools.com/sql/sql_ref_desc.asp
https://www.w3schools.com/sql/sql_ref_distinct.asp
https://www.w3schools.com/sql/sql_ref_drop.asp
https://www.w3schools.com/sql/sql_ref_drop_column.asp

Co-funded by the
Erasmus+ Programme
of the European Union

DROP CONSTRAINT | Deletes a UNIQUE, PRIMARY KEY, FOREIGN KEY, or
CHECK constraint

DROP DATABASE Deletes an existing SQL database

DROP DEFAULT Deletes a DEFAULT constraint

DROP INDEX Deletes an index in a table

DROP TABLE Deletes an existing table in the database

DROP VIEW Deletes a view

EXEC Executes a stored procedure

EXISTS Tests for the existence of any record in a subquery

FOREIGN KEY A constraint that is a key used to link two tables together

FROM Specifies which table to select or delete data from

FULL OUTER JOIN Returns all rows when there is a match in either left table
or right table

93|Page
== P8l &5 i @ ZAUG) 4
!, ENS AW\ Corvtar for Soou a i r ’ Ay
Q INPOWER &5 Innovation L) i ffarad p A N
The European Commission's support far the production of this publication does not constitute an endarsement of the

comtents, which reflect the views only of the authors, and the Commssion cannot be held responsible for any use which may

be made af the infarmation contained therain

https://www.w3schools.com/sql/sql_ref_drop_constraint.asp
https://www.w3schools.com/sql/sql_ref_drop_database.asp
https://www.w3schools.com/sql/sql_ref_drop_default.asp
https://www.w3schools.com/sql/sql_ref_drop_index.asp
https://www.w3schools.com/sql/sql_ref_drop_table.asp
https://www.w3schools.com/sql/sql_ref_drop_view.asp
https://www.w3schools.com/sql/sql_ref_exec.asp
https://www.w3schools.com/sql/sql_ref_exists.asp
https://www.w3schools.com/sql/sql_ref_foreign_key.asp
https://www.w3schools.com/sql/sql_ref_from.asp
https://www.w3schools.com/sql/sql_ref_full_outer_join.asp

Co-funded by the
Erasmus+ Programme
of the European Union

GROUP BY Groups the result set (used with aggregate functions:
COUNT, MAX, MIN, SUM, AVG)

HAVING Used instead of WHERE with aggregate functions

IN Allows you to specify multiple values in a WHERE clause

INDEX Creates or deletes an index in a table

INNER JOIN Returns rows that have matching values in both tables

INSERT INTO

Inserts new rows in a table

INSERT INTO | Copies data from one table into another table

SELECT

IS NULL Tests for empty values

IS NOT NULL Tests for non-empty values

JOIN Joins tables

LEFT JOIN Returns all rows from the left table, and the matching rows

from the right table

orents, whicr

= Sp8l &5 s @ i EJZAUG) 4 Aorin § =

reflect the wews

The European Commission's support far the production of this publication does

anly of the authors, and the C
be made

94|Page

not constitute an endorsement of the
omin

of the infarmation contained therain

ssion cannot be held responsible for any use which may

https://www.w3schools.com/sql/sql_ref_group_by.asp
https://www.w3schools.com/sql/sql_ref_having.asp
https://www.w3schools.com/sql/sql_ref_in.asp
https://www.w3schools.com/sql/sql_ref_index.asp
https://www.w3schools.com/sql/sql_ref_inner_join.asp
https://www.w3schools.com/sql/sql_ref_insert_into.asp
https://www.w3schools.com/sql/sql_ref_insert_into_select.asp
https://www.w3schools.com/sql/sql_ref_insert_into_select.asp
https://www.w3schools.com/sql/sql_ref_is_null.asp
https://www.w3schools.com/sql/sql_ref_is_not_null.asp
https://www.w3schools.com/sql/sql_ref_join.asp
https://www.w3schools.com/sql/sql_ref_left_join.asp

Co-funded by the
Erasmus+ Programme
of the European Union

,which reflect the v

support lor the production of this publicastion does not cof
s only of the authors, and the Com

SSION Cannot be held rest

be made af the infarmation contained therain

nonsible for an Y USE whi

Searches for a specified pattern in a column
LIMIT Specifies the number of records to return in the result set
NOT Only includes rows where a condition is not true
NOT NULL A constraint that enforces a column to not accept NULL
values
OR Includes rows where either condition is true
ORDER BY Sorts the result set in ascending or descending order
OUTER JOIN Returns all rows when there is a match in either left table
or right table
PRIMARY KEY A constraint that uniquely identifies each record in a
database table
PROCEDURE A stored procedure
RIGHT JOIN Returns all rows from the right table, and the matching rows
from the left table
ROWNUM Specifies the number of records to return in the result set
95|Page
‘a :
sual Q iN POWER & lﬁm.vt on .z ,)"‘ 114/46&07@:" o @GP
The European Caommiss stitute an endorsement of tf

h may

https://www.w3schools.com/sql/sql_ref_like.asp
https://www.w3schools.com/sql/sql_ref_limit.asp
https://www.w3schools.com/sql/sql_ref_not.asp
https://www.w3schools.com/sql/sql_ref_not_null.asp
https://www.w3schools.com/sql/sql_ref_or.asp
https://www.w3schools.com/sql/sql_ref_order_by.asp
https://www.w3schools.com/sql/sql_ref_outer_join.asp
https://www.w3schools.com/sql/sql_ref_primary_key.asp
https://www.w3schools.com/sql/sql_ref_procedure.asp
https://www.w3schools.com/sql/sql_ref_right_join.asp
https://www.w3schools.com/sql/sql_ref_rownum.asp

Co-funded by the
Erasmus+ Programme
of the European Union

,which refiect the wews

support lor the production of this publicastion does not cof
only of th)
be made af the

¢ authors, and the Cor O e held rest

infarmation contained therain

SSian cann nonsible §

r any use whi

SELECT Selects data from a database
SELECT DISTINCT Selects only distinct (different) values
SELECT INTO Copies data from one table into a new table
SELECT TOP Specifies the number of records to return in the result set
SET Specifies which columns and values that should be
updated in a table
TABLE Creates a table, or adds, deletes, or modifies columns in a
table, or deletes a table or data inside a table
(0) Specifies the number of records to return in the result set
TRUNCATE TABLE Deletes the data inside a table, but not the table itself
UNION Combines the result set of two or more SELECT
statements (only distinct values)
UNION ALL Combines the result set of two or more SELECT
statements (allows duplicate values)
9% |Page
‘a :
sual Q iN POWER & lﬁm.vt on .z ,)"‘ 114/46&07@:" o @GP
The European Cammisson' stitute an endorsement of tf

h may

https://www.w3schools.com/sql/sql_ref_select.asp
https://www.w3schools.com/sql/sql_ref_select_distinct.asp
https://www.w3schools.com/sql/sql_ref_select_into.asp
https://www.w3schools.com/sql/sql_ref_select_top.asp
https://www.w3schools.com/sql/sql_ref_set.asp
https://www.w3schools.com/sql/sql_ref_table.asp
https://www.w3schools.com/sql/sql_ref_top.asp
https://www.w3schools.com/sql/sql_ref_truncate_table.asp
https://www.w3schools.com/sql/sql_ref_union.asp
https://www.w3schools.com/sql/sql_ref_union_all.asp

Co-funded by the
Erasmus+ Programme
of the European Union

A constraint that ensures that all values in a column are
unique
UPDATE Updates existing rows in a table
VALUES Specifies the values of an INSERT INTO statement
VIEW Creates, updates, or deletes a view

Table 68 — SQL Keywords and Descriptions (Source: https://www.w3schools.com/sal/sal ref keywords.asp)

MySQL Functions

For more details and a comprehensive list on specific functions used in MySQL,

learners can refer to this link.

SQL Server Functions

For more details and a comprehensive list on specific functions used in SQL Server,

learners can refer to this link.

MS Access Functions

For more details and a comprehensive list on specific functions used in SQL Server,
learners can refer to this link.

SQL Quick Ref

For a comprehensive list of SQL statements and their corresponding syntax, learners
can refer to this link.

97|Page

- swl G N POWER & N cioon .Z j;-)‘“/46ﬂ07¥i B

stan does not cory

The LJ! opean Commisson's support far the production

SSION Canr LI[' W held respor -,.xUlu' for any use which may

contents, which reflect the wews only of the authors, an

be made al the information contained thersin

https://www.w3schools.com/sql/sql_ref_unique.asp
https://www.w3schools.com/sql/sql_ref_update.asp
https://www.w3schools.com/sql/sql_ref_values.asp
https://www.w3schools.com/sql/sql_ref_view.asp
https://www.w3schools.com/sql/sql_ref_keywords.asp
https://www.w3schools.com/sql/sql_ref_mysql.asp
https://www.w3schools.com/sql/sql_ref_sqlserver.asp
https://www.w3schools.com/sql/sql_ref_msaccess.asp
https://www.w3schools.com/sql/sql_quickref.asp

Co-funded by the
Erasmus+ Programme
COdG‘4$p of the European Union

4.4. SQL Examples

SQL Examples

There is comprehensive list of examples in the W3Schools website that learners can
use to self-study and practice their SQL skills further.

SQL Quiz

For learners that want to assess their knowledge and skills on SQL, please refer to
one of the following websites:

e \W3Schools
e Tutorialspoint

SQL Exercises

For a comprehensive list of exercises, learners can use the W3Schools website to
practice their SQL skills.

98|Page
= spel G!
N POWER } Innovation J‘ Aiffaran S
The European Commission's support far the production of this publication does not constitute an endorsement of the

contents, which reflect the wews only of the authors, and the Commission cannat be held responsible for any use which may

be made al the information contained therain

https://www.w3schools.com/sql/sql_examples.asp
https://www.w3schools.com/sql/sql_quiz.asp
https://www.tutorialspoint.com/sql/sql_online_quiz.htm
https://www.w3schools.com/sql/sql_exercises.asp

