

3.1.:

Code4SP Training
Material Package

WP3:

Code4SP Training
Materials - JavaScript

Prepared by:

2 | P a g e

Project Information

Project Acronym: Code4SP

Project Title: Coding for Social Promotion

Project Reference: 621417-EPP-1-2020-1-PT-EPPKA3-IPI-SOC-IN

Project website: www.code4sp.eu

Authoring Partner: Various Authors

Document Version: 2

Date of Preparation: 03/03/2022

Document History

Date Version Author Description

03/03/2022 1 Various Authors Draft

22/03/2022 2 Various Authors Revision

http://www.code4sp.eu/

3 | P a g e

Table of contents

Topic Information: .. 4

5.1. JavaScript Basic.. 7

5.2. JavaScript & DOM ... 82

5.3. JavaScript & BOM ... 111

5.4. JavaScript Advanced .. 131

4 | P a g e

Topic:

5. JavaScript

Prerequisites:

To learn JavaScript, learners must know the basics of HTML and CSS. For a working

knowledge of JavaScript and most web-based projects, this knowledge will be sufficient.

For more advanced projects and skills, it is recommended to know basic OOP concepts

and an OOP based programming language (like Java).

Workload:

15 hours.

Description:

JavaScript is a programming language that allows the developer to perform changes on

the content of a web page in a dynamic way. JavaScript is among the most powerful

and flexible programming languages of the web.

This JavaScript topic covers all the fundamental programming concepts, including data

types, operators, creating and using variables, generating outputs, structuring the code

to make decisions in programs or to loop over the same block of code multiple times,

creating and manipulating strings and arrays, defining and calling functions, etc.

Once learners are comfortable with the basics, they will move on to next level that

explains the idea of objects, the Document Object Model (DOM) and Browser Object

Model (BOM), as well as how to make use of the native JavaScript objects like Date,

Math, etc., and perform type conversions.

5 | P a g e

Moreover, some advanced concepts like event listeners, event propagation, borrowing

methods from other objects, hoisting behavior of JavaScript, encoding and decoding

JSON data, as well as detailed overview of new features introduced in ECMAScript 6

(or ES6) will be explored.

Learning outcomes:

Learners will understand how JavaScript allows the developer to change content

dynamically and modify the HTML or CSS information on the client side, when the

webpage is being shown to the user. Therefore, learners will study the structures of

JavaScript code; will get to know how to change HTML/CSS code on the loading of the

page and also will learn how to create a function and attach it to an event.

Material required:

• Computer or laptop

• Internet connection

• Text editor (online or offline): Sublime Text/Brackets/W3Schools online editor

Lesson Scenario:

The total time for this topic is 15 hours, and it will be up to the trainer/coach to decide

how much time to dedicate to teaching each subtopic. In order to make the most of all

the time available, we propose the use of the training materials produced by the project

(PPT presentations), which were designed with an effective use of time in mind. These

presentations are composed of the following elements:

• Development of the subtopic and main ideas to retain;

• Proposed Activities/Exercises.

That said, if the trainer/coach follows the logical sequence of the PPTs, he/she will

certainly be able to complete the session within the stipulated time limit. These

presentations can also be made available to learners for individual study.

https://www.sublimetext.com/
https://brackets.io/
https://www.w3schools.com/tryit/default.asp

6 | P a g e

Subtopics:

• JavaScript Basic

• JavaScript & DOM

• JavaScript & BOM

• JavaScript Advanced

• JavaScript Reference

Additional resources:

• JavaScript tutorial: w3schools

• Online Course on JavaScript: CodeAcademy

https://www.w3schools.com/js/default.asp
https://www.codecademy.com/learn/introduction-to-javascript

7 | P a g e

5.1. JavaScript Basic

JavaScript (JS) is the most widespread client-side scripting language (client-side

scripting is associated to scripts running within a web browser). JS is intended to add

interactivity and dynamic effects to the web pages by manipulating the content returned

from a web server.

JavaScript was first developed as LiveScript by Netscape’s computer programmer

Brendan Eich in 1995. It was later renamed to JavaScript, and became an ECMA

(European Computer Manufacturers Association) standard in 1997. Nowadays,

JavaScript is the standard client-side scripting language for web-based applications, and

it is supported by nearly all web browsers available (Chrome, Firefox, Safari, etc.).

JavaScript is an object-oriented language, and it also has some similarities in syntax to

Java programming language, even though it is not related to Java at all.

JavaScript can be used for various purposes:

• Modify the content of a web page by adding or removing elements;

• Change the style and position of the elements on a web page;

• Monitor events like mouse click, hover, etc. and react to it;

• Make and control transitions and animations;

• Produce alert pop-ups to display info or warning messages to the user;

• Complete operations based on user inputs and display the results;

• Validate user inputs before submitting them to the server;

• And many other interesting purposes to be checked later.

8 | P a g e

Getting started with JavaScript

 From this point, learners will understand how simple it can be to add interactivity to a

web page by using JavaScript.

Characteristically, there are 3 ways of adding JS to a webpage:

a) Embedding the JavaScript code between a <script> and a </script> tag;

b) Creating an external JavaScript file with the .js extension and then load it within

the page through the src attribute of the <script> tag.

c) Placing the JavaScript code directly inside an HTML tag using the special tag

attributes such as onclick, onmouseover, onkeypress, onload, etc.

a) Embedding the JavaScript code between a <script> and a </script> tag;

The JavaScript code can be embedded directly within a web page by placing it between

the <script> and </script> tags. The <script> tag indicates the browser that the contained

statements are to be interpreted as executable script and not HTML, as checked in the

following example:

Figure 1 – Embedding JS code between a <script> and a </script> tag (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

b) Creating an external JavaScript file with the .js extension and then load it

within the page through the src attribute of the <script> tag.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

9 | P a g e

A JavaScript code can be placed as well into a separate file with a .js extension, being

then called in that file in the same document through the src attribute of the <script> tag,

as follows:

<script src="js/hello.js"></script>

This is especially valuable if the programmer wants the same scripts available to multiple

documents. Following this procedure, he/she will avoid repeating the same task over

and over again, and it makes his/her website much simpler to maintain.

Forward to the statement above, a JavaScript file named "hello.js" will be created and

the following code shall be inserted in it:

Figure 2 – Creating a file and calling a function on JS (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

At this point, the programmer may call the above JS file within a webpage by using the

<script> tag, as seen in the image below:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

10 | P a g e

Figure 3 – Creating a file and calling a function on JS (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

c) Placing the JavaScript code directly inside an HTML tag using the special

tag attributes such as onclick, onmouseover, onkeypress, onload, etc.

JavaScript code may be introduced inline by inserting it directly inside the HTML tag by

means of the special tag attributes such as onclick, onmouseover, onkeypress, onload,

etc.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

11 | P a g e

Nonetheless, it is not advisable to place large amount of JavaScript code inline as it

disorders up HTML with JavaScript and makes JS code hard to maintain. Figure 4 shows

an example (in this case, an alert message is shown upon clicking on the button

element):

Figure 4 – Placing the JS code inline (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

The <script> element can be positioned in the <head> or <body> section of an HTML

document. However, scripts should be preferably positioned at the end of the body

section, before the closing </body> tag. This procedure will enable web pages to load

faster, since it avoids obstruction of initial page rendering. Each <script> tag blocks the

page rendering process until it has fully downloaded and executed the JavaScript code,

so placing them in the head section (i.e. <head> element) of the document without any

valid reason will significantly impact the performance of a website.

There are differences between Client-side and Server-side Scripting. Client-side

scripting languages (e.g., JavaScript or VBScript are understood and executed by the

web browser, in opposite of server-side scripting languages (e.g., PHP, ASP, Java,

Python, Ruby, etc.), which run on the web server and their output is sent back to the

web browser in HTML format.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

12 | P a g e

Client-side scripting has many advantages comparing to traditional server-side scripting.

For instance, JavaScript can be used to check if the user has entered invalid data in

form fields and show notifications for input errors consequently in real-time before

submitting the form to the web-server for final data validation and further processing in

order to avoid needless network bandwidth usages and the misuse of server system

resources.

Likewise, response from a server-side script is slower as compared to a client-side

script, as server-side scripts are processed on a remote computer (not on a local one).

JavaScript Syntax

It is time to learn how to write the JS code.

Firstly, it is important to understand the JavaScript Syntax.

The syntax of JS is the set of rules that comprise a well-structured JavaScript

programme. JS involves statements that are placed within the <script> </script> HTML

tags in a web page, or within the external JavaScript file having .js extension.

Figure 5 below presents an example of a JS statement:

13 | P a g e

Figure 5 – Example of a JavaScript statement (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

Learners should state that JavaScript is case-sensitive. So, variables, language

keywords, function names and other identifiers must be typed consistently in terms of

letters capitalisation. For instance, the variable myVar must be typed this way (not

“MYVAR”, “myvar”, etc.). This applies for all cases.

Commonly to the previous topics, JavaScript also provides the possibility of writing

comments throughout the coding lines. Comments are inserted mainly because they

provide extra information to the source code, but also because it can help programmers

on understanding their codes after some time, teamworking, etc.

It is possible to add both single-line as well as multi-line comments on JavaScript.

Single-line comments start with a double forward slash (//), followed by the comment

text:

Figure 6 – Single-line comment on JavaScript (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

14 | P a g e

For a multi-line comment, a slash and an asterisk (/*) are the starting point, ending with

an asterisk and a slash (*/):

Figure 7 – Multi-line comment on JavaScript (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

get-started.php)

JavaScript Variables

For storing data in JavaScript, programmers create variables. They are key for all the

programming languages, and are used to store data, for instance by string of text,

numbers, or other element(s). Whenever the programmer needs, he/she can set, update

and retrieve data or value stored in the variables. Variables can be understood as

symbolic names for values.

A variable can be created by using the var keyword, in which the assignment operator

(“=”) is used to allocate value to a variable, as follows: var varName = value

Figure 8 – Creating a variable (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

In this example, three variables have been created:

Number 1 – string value

Number 2 – number

Number 3 – Boolean value

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

15 | P a g e

In JS, some variables are created with the purpose of holding values such as user

inputs. That being said, they can be declared without having any initial values

associated, as follows:

Figure 9 – Creating a variable without having any initial values assigned to them (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

Moreover, the programmer may also declare multiple variables and, in a single

statement, set their initial values. Each variable is detached by commas, as follows:

Figure 10 – Declaring multiple variables (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

The latest revision of JavaScript (ECMAScript 2015 or ES6) introduces two new

keywords for declaring variables: let and const.

The const keyword works the same way as let. However, variables declared using const

cannot be reassigned later in the code, as follows:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

16 | P a g e

Figure 11 – Declaring multiple variables (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

In opposite to var keyword, which declare function-scoped variables, both let and const

keywords declare variables, scoped at block-level ({}). Block scoping means that a new

scope is created between a pair of curly brackets.

JavaScript variables have specific rules for being named:

• A variable name must start with a letter, underscore (_), or dollar sign ($).

• A variable name cannot start with a number.

• A variable name can only comprise alpha-numeric characters (A-Z, 0-9)

and underscores.

• A variable name cannot comprehend spaces.

• A variable name cannot be a JavaScript keyword or a JavaScript reserved

word.

JavaScript Generating Output

There are certain situations in which programmers may need to create outputs from the

JS code, e.g., see the variable’s value, write a message to browser console, etc. In

JavaScript, there are some different ways of creating output including writing output to

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

17 | P a g e

the browser window or browser console, displaying output in dialog boxes, writing output

into an HTML element, etc.

It is not difficult to output a message or to write data to the browser’s console (it can be

accessed by clicking F12). For that purpose, the console.log() , a powerful yet simple

method, should be applied.

Figure 12 – Generating ouputs by using console.log (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

To write the content to the current document only while that document is being

deconstructed, the document.write() method can be used.

Figure 13 – Generating ouputs by using console.log (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

18 | P a g e

If the document.write() method is used after the page has been loaded, it will overwrite

all the existing content in that document, as follows in this link.

Alert dialog boxes can also be added to display the message or output data to the

user. To create an alert dialog, the alert() method is used, as follows:

Figure 14 – Generating alert dialog boxes (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

get-started.php)

Outputs can be inserted or written inside an HTML element using the innerHTML

property. Nonetheless, the programmer should select the element before writing the

output, using the getElementById() method.

Figure 15 – Using the getElementByld () method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=problem-with-document-write-method
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

19 | P a g e

JavaScript Data Types

Data types essentially stipulate what kind of data can be stored and manipulated within

a program. There are six basic data types in JS, which can be divided into three main

categories:

• Primitive (or primary) – String, Number, and Boolean are examples of primitive

data types, which can hold only one value at a time;

• Composite (or reference) – Object, Array, and Function (which are all types of

objects) are composite data types. These can hold collections of values and more

complex entities; and

• Special data types – Undefined and Null are special data types.

The String data type

It is used to embody textual data (for instance, sequences of characters). Strings are

created using single or double quotes surrounding one or more characters:

Figure 16 – The String data type (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

It should be noted that quotes can be included inside the string, but they should not

match the enclosing quotes, as follows on this example.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=include-quotes-inside-the-string

20 | P a g e

The Number Data Type

The number data type is useful for exhibiting positive or negative numbers with or

without decimal place, or numbers written using exponential notation, for instance: 1.5e-

4 (equivalent to 1.5x10-4).

Figure 17 – The String data type (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

The Number Data Type also comprises some special values which are: Infinity, -Infinity

and NaN. Infinity represents the mathematical infinity (∞), which is greater than any

number. Infinity is the result of dividing a nonzero number by 0, as could be checked on

Figure 18:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

21 | P a g e

Figure 18 – The Number Data Type (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

However, NaN represents a special Not-a-Number value. It is a result of an invalid or an

undefined mathematical operation, for example, taking the square root of -1 or dividing

0 by 0, etc.

The Boolean Data Type

Two values can be hold in this data type: true or false. It is classically used to stock

values like yes (true) or no (false), on (true) or off (false), etc. as follows:

Figure 19 – The Boolean Data Type (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=not-a-number
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

22 | P a g e

Boolean values likewise come as an outcome of comparisons in a program. This

example relates two variables and displays the result in an alert dialog box.

The Undefined Data Type

The undefined data type can only take one value – the special value undefined. If a

variable has been declared, but has not been assigned a value, the value shall be

declared undefined.

Figure 20 – The Undefined Data Type (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

The Null Data Type

This is one more special data type that can have only one value – the null value. A null

value means that simply there is no value. It is not equivalent to an empty string ("") or

zero, it is purely nothing.

A variable can be clearly emptied of its current contents by assigning it the null value.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=comparisons
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

23 | P a g e

Figure 21 – The Null Data Type (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

The Object Data Type

The object is a multifaceted data type that permits to store data collections.

An object contains properties, defined as a key-value pair. A property key (name) is

always a string, but the value can be any data type (strings, numbers, booleans, or

complex data types like arrays, function and other objects). The simplest way to create

an object in JavaScript is shown below:

Figure 22 – The simplest way for creating an object in JS (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

24 | P a g e

The quotes around property name may be omitted if the name is a valid JS name. This

means quotes are required around "first-name" but are non-compulsory around

firstname. Thus, the car object in Figure 22 can also be written as follows:

Figure 23 – Rewriting the car object from Fig. 22 (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

The Array Data Type

An array is a type of object used for packing multiple values in single variable. Each

value (also known as ‘element’) in an array has a numeric position, known as its index,

and it may comprise data of any data type-numbers, strings, booleans, functions,

objects, and even other arrays. The array index starts from 0 (zero), so that the first

array element is arr[0] not arr[1].

The simplest way to make an array is by stipulating the array elements as a comma-

separated list enclosed by square brackets, as follows:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

25 | P a g e

Figure 24 – Rewriting the car object from Fig. 22 (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

The Function Data Type

The function is a callable object that makes a block of code. Functions are objects, thus

it is possible to assign them to variables, as follows:

Figure 25 – The Function Data Type (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

Actually, functions can be used anywhere, and other values can be used. They can be

stored in variables, objects, and arrays. Functions can be approved as arguments to

other functions, and they can be returned from functions.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

26 | P a g e

The typeof Operator

The typeof operator can be used to realize what type of data a variable covers. It can

be used with or without parentheses (typeof(x) or typeof x).

The typeof operator is mostly beneficial to process the values of different types in a

different way. However, the programmer should be cautious, as it may produce

unforeseen results in some cases:

Figure 26 – The typeof Operator (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

As it is quite noticeable in the example from Figure 26, when the null value is tested

using the typeof operator (line 22), "object" is returned instead of "null".

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

27 | P a g e

This is an enduring bug in JavaScript, but since lots of codes on the web are written

around this behaviour, and since fixing it would generate many more problems, this

issue was excluded by the committee that design and maintains JavaScript.

JavaScript Operators

Operators are symbols or keywords that inform the JavaScript engine to make a given

action. For instance, the addition (+) symbol is an operator that tells JavaScript engine

to add two variables or values, whereas the equal-to (==), greater-than (>) or less-than

(<) symbols are the operators that tells JavaScript engine to compare two variables or

values, etc.

Among the different operators used in JavaScript, the first ones to be described are the

JavaScript Arithmetic Operators. These are put in action in order to perform common

arithmetical operations (additions, subtraction, multiplication, and so on). The complete

list follows below:

Operator Description Example Result

+ Addition x + y Sum of x and y

- Subtraction x - y Difference of x and y.

* Multiplication x * y Product of x and y.

/ Division x / y Quotient of x and y

% Modulus x % y Remainder of x divided by y

Table 1 – Arithmetic Operators (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

Here is a practical example on how the aforementioned operators can be used:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

28 | P a g e

Figure 27 – The JS Arithmetic Operators (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

get-started.php)

Then, there are as well JS String Operators (two of them):

Operator Description Example Result

+ Concatenation str1 + str2 Concatenation of str1 and str2

+= Concatenation assignment str1 += str2 Appends the str2 to the str1

Table 2 – String Operators (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

A practical example:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

29 | P a g e

Figure 28 – The JS Arithmetic Operators (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

get-started.php)

Concerning the JS Incrementing and Decrementing Operators, they are used to

increment/decrement a variable’s value.

Operator Name Effect

++x Pre-increment Increments x by one, then returns x

x++ Post-increment Returns x, then increments x by one

--x Pre-decrement Decrements x by one, then returns x

x-- Post-decrement Returns x, then decrements x by one

Table 3 – Incrementing and Decrementing Operators (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

A real-world example:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

30 | P a g e

Figure 29 – JS Incrementing and Decrementing Operators (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

To combine conditional statements, JS Logical Operators are used.

Operator Name Example Result

&& And x && y True if both x and y are true

|| Or x || y True if either x or y is true

! Not !x True if x is not true

Table 4 – Logical Operators (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

Here is a practical example:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

31 | P a g e

Figure 30 – JS Incrementing and Decrementing Operators (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

Regarding JS Comparison Operators, programmers use them to compare two values

in a Boolean Fashion.

Table 5 – Comparison Operators (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

Operator Name Example Result

== Equal x == y True if x is equal to y

=== Identical x === y True if x is equal to y, and they are of the same type

!= Not equal x != y True if x is not equal to y

!== Not identical x !== y True if x is not equal to y, or they are not of the same

type

< Less than x < y True if x is less than y

> Greater than x > y True if x is greater than y

>= Greater than or equal to x >= y True if x is greater than or equal to y

<= Less than or equal to x <= y True if x is less than or equal to y

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-data-types.php

32 | P a g e

How they work:

Figure 31 – JS Incrementing and Decrementing Operators (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

33 | P a g e

JavaScript Events

Before going into deep on this section, it is important to acknowledge what an event is

in this context. An event is something that occurs each time users interact with the web

page, such as when a link or a button is clicked, text is entered into an input box or

textarea, a selection is made in a select box, key is pressed on the keyboard, the mouse

pointer is moved, a form is submitted, and so on. Every so often, the browser is able to

trigger the events itself, for example when loading a page.

When an event happens, programmers can use a JavaScript event handler (or listener)

to spot them and do specific task/s. By convention, the names for event handlers always

start with the word "on", so an event handler for the click event is named onclick, likewise

an event handler for the load event is named onload, event handler for the blur event is

named onblur, etc.

There are many ways of assigning an event handler. The simplest way is to add them

directly to the start tag of the HTML elements, by means of the special event-handler

attributes. E.g., to assign a click handler for a button element, the onclick attribute may

be used, as follows:

Figure 32 – JS Incrementing and Decrementing Operators (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

34 | P a g e

Nonetheless, to keep the JavaScript detached from HTML, programmers can set up the

event handler in an external JavaScript file or within the <script> and </script> tags, as

follows:

Figure 33 – Assigning an event handler (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

Generally, events can be categorised into four main groups — mouse events,

keyboard events, form events and document/window events. There are many other

events, which will be exploited more furtherly. The most useful events will be overviewed

below:

• Mouse Events

A mouse event is activated when the user clicks some element, moves the mouse

pointer over an element, and so on. Some important mouse events and their event

handlers are as follows:

o The Click Event (onclick): The click event happens when a user clicks

on an element on a web page. Habitually, these are form elements and

links. A click event can be handled with an onclick event handler.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

35 | P a g e

The following example presents the case of an alert message popping up

when the user clicks on the elements.

o The Contextmenu Event (oncontextmenu): it occurs when users click

the mouse’s right button on an element, opening a context menu.

Oncontextmenu event handler handles a contextmenu event. This

example pops an alert message when users right-click the elements.

o The Mouseover Event (onmouseover): it happens when users move the

mouse pointer over an element. It can be handled with the onmouseover

event handler. The following example shows an alert message when the

mouse is placed over the elements.

o The Mouseout Event (onmouseout): it takes place when users move

the mouse pointer outside of an element. It can be handled by using the

onmouseout event handler. The following example will show you an alert

message when the mouseout event occurs.

• Keyboard Events

A keyboard event takes place when the user presses or releases a key on the keyboard.

Some of the most important keyboard events and their event handlers are as follows:

o The Keydown Event (onkeydown): it happens when users press down

a key on the keyboard. It can be handled by using the onkeydown event

handler. This example shows an alert message each time a keydown

event occurs.

o The Keyup Event (onkeyup): it occurs when users release a key on the

keyboard. Handled with onkeyup event handler. This example shows an

alert message when it occurs.

o The Keypress Event (onkeypress): it happens when a user presses

down a key on the keyboard that has a character value linked to it. E.g.,

Ctrl, Shift, Alt, Esc, Arrow keys, etc. will not generate a keypress event,

but will generate a keydown and keyup event. The onkeypress event

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-click-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-contextmenu-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-contextmenu-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-mouseover-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-mouseout-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-keydown-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-keyup-event

36 | P a g e

handler handles the keypress event. It can be checked here through an

alert message.

• Form Events

A form event is triggered as soon as a form control receives or loses focus or when

the user modifies a form control value (e.g., by typing text in a text input), select an

option in a select box, etc.

o The Focus Event (onfocus): it happens when users give focus to an

element on a webpage. It can be handled with onfocus event handler. This

example will highlight the background of text input in yellow colour when

it obtains the focus.

o The Blur Event (onblur): it happens when the user takes the focus away

from a window or form element. It can be handled with the onblur event

handler. The following example will exhibit an alert message as soon as

the text input element misses focus.

o The Change Event (onchange): it occurs as soon as a user modificates

the value of a form element. Event handler: onchange. This example

shows an alert message when the option in the select box is changed.

o The Submit Event (onsubmit): it only happens when the user submits a

form on a webpage. Event handler: onsubmit. This example shows an

alert message while submitting the form.

• Document/Window Events

Situations in which the page has loaded or resized the browser window can as well

trigger events.

o The Load Event (onload): it happens when a webpage fully loads in a

web browser. Event handler: onload. The following example will emit an

alert message as soon as page loads.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-keypress-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-focus-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-focus-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-blur-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-change-event
https://www.tutorialrepublic.com/javascript-tutorial/javascript-events.php
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-load-event

37 | P a g e

o The Unload Event (onunload): when the user leaves the present

webpage, this event takes place. Event handler: onunload. This example

shows an alert pop-up when the user tries to leave the page.

o The Resize Event (onresize): it happens when the Internet user resizes,

minimises or maximises the browser window. Event handler: onresize.

This example shows an alert message right after the user resizes the

browser’s window.

JavaScript Strings

In JavaScript, strings play a key role on the overall structure of a webpage, since they

are a sequence of letters, numbers, special characters and arithmetic values or even a

combination of all. They can be created by enfolding the string literal (i.e. string

characters) either within single quotes (') or double quotes ("), as follows:

Figure 34 – JavaScript strings example (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

Quotes can be used inside a string, but they should not match the quotes surrounding

the string:

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-unload-event
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=handling-the-resize-event
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

38 | P a g e

Figure 35 – JavaScript strings example II (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

get-started.php)

Nonetheless, single quotes can still be put inside a single quoted strings or double

quotes inside double quoted strings, by separating the quotes with a backslash

character (\), as Figure 36 shows. The backslash is termed an escape character, and

the sequences \’ and \” are escape sequences.

Figure 36 – The backslash (\) escape character (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

39 | P a g e

Escape sequences are likewise valuable for adding characters that cannot be inserted

by means of a keyboard. Some other most frequently used escape sequences are:

• \n is replaced by the newline character

• \t is replaced by the tab character

• \r is replaced by the carriage-return character

• \b is replaced by the backspace character

• \\ is replaced by a single backslash (\)

Figure 37 elucidates how escape sequences work:

Figure 37 – How escape sequences work (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

get-started.php)

Performing Operations on Strings

JavaScript makes available several properties and methods to make operations on

string values. Precisely, only objects can have properties and methods. However, in

JavaScript, primitive data types can perform like objects when the programmer refers to

them with the property access notation. JavaScript offers this possibility through the

creation of a provisional wrapper object for primitive data types. This procedure is done

automatically by the JS interpreter in the background.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

40 | P a g e

Getting the Length of a String

The length property returns the length of the string, which is the number of characters

delimited in the string, including the number of special characters as well, such as \t or

\n. Programmers should be careful on using parentheses after length (e.g. str.length()),

as the correct way is str.length (or else, it will generate an error).

Figure 38 – How to get the length of a string (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

get-started.php)

Finding a String Inside Another String

indexOf() method can be used to find a substring or string within another string. This

technique returns the index or position of the first incidence of a specified string within

a string.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

41 | P a g e

Figure 39 – Finding a string inside another string (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

Likewise, the lastIndexOf() technique can be used to get the index or position of the last

occurrence of the specified string within a string, as follows:

Figure 40 – Finding a string inside another string using the lastIndexOf() method (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

Both the indexOf(), and the lastIndexOf() approaches return -1 if the substring is not

found. Both methods as well accept an optional integer parameter which stipulates the

position within the string at which to start the search.

Searching for a Pattern Inside a String

The search() method can be used to search a particular piece of text or pattern inside a

string. As the indexOf() approach, search() also returns the index of the first match, and

returns -1 if no matches were found, but unlike indexOf(), search () can as well take a

regular expression as its argument to deliver advanced search aptitudes. It should be

stated that the search() approach does not support global searches, as it disregards the

g flag or modifier of its regular expression argument.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

42 | P a g e

Figure 41 – Searching for a pattern inside a string (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

Extracting a Substring from a String

For take out a part or substring from a string, the slice() method can be used. This takes

two parameters: start index (index where extraction begins), and an optional end index

(index before which to end extraction), like str.slice(startIndex, endIndex).

The example below slices out a portion of a string from position 4 to position 15:

Figure 42 – Extracting a Substring from a String using the slice() method (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

43 | P a g e

Negative values can be specified as well. These values are treated as strLength +

startIndex, where strLength is the length of the string (for instance, str.length), for

example, if startIndex is -5 it is treated as strLength - 5. If startIndex is greater than or

equal to the length of the string, slice() method returns an empty string. Correspondingly,

if optional endIndex is not specified or omitted, the slice() method extracts to the end of

the string.

Figure 43 – Specifying negative values (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-

started.php)

The substring() method to extract a section of the given string based on start and end

indexes, as str.substring(startIndex, endIndex). The substring() method is very

comparable to the slice(), except some differences:

• If either argument is less than 0 or is NaN, it is treated as 0.

• If either argument is greater than str.length, it is treated as if it were str.length.

• If startIndex is greater than endIndex, then substring() will switch those two

arguments; i.e., str.substring(5, 0) == str.substring(0, 5).

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

44 | P a g e

Figure 44 – The substring() method to extract a section of the given string based on start and end indexes

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

Extracting a Fixed Number of Characters from a String

JavaScript also delivers the substr() technique, which is similar to slice() with a minor

difference: the second parameter stipulates the number of characters to extract instead

of ending index, as str.substr(startIndex, length). If length is 0 or a negative number, an

empty string is returned.

Figure 45 – Extracting a Fixed Number of Characters from a String (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

45 | P a g e

Replacing the Contents of a String

The replace() technique is used to replace part of a string with another string. This

approach takes a regular expression to match or substring with two parameters and a

replacement string, i.e. str.replace(regexp|substr, newSubstr). This replace() method

returns a new string, it does not distress the original string, which will remain unaffected.

.

Figure 46 – Replacing the Contents of a String using the replace() technique (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

By default, the replace() technique substitutes only the first match, and it is case-

sensitive. To replace the substring within a string in a case-insensitive way, a regular

expression (regexp) with an i modifier can be used, as follows:

Figure 46 – Replacing the Contents of a String using the replace() technique (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

46 | P a g e

Also, to replace all the incidences of a substring within a string in a case-insensitive

manner, the g modifier along with the i modifier can be used, as follows below:

Figure 47 – Replacing all the incidences of a substring within a string in a case-insensitive manner (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

Converting a String to Uppercase or Lowercase

The toUpperCase() method is used to convert a string to uppercase, as follows:

Figure 48 – Converting a String to Uppercase using toUpperCase() method (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

Likewise, the toLowerCase() method is used to convert a string to lowercase:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

47 | P a g e

Figure 49 – Converting a String to Lowercase using toLowerCase() method (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

Concatenating Two or More Strings

Two or more strings can be concatenated or combined by using the + and +=

assignment operators.

Figure 50 – Concatenating Two or More Strings (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

48 | P a g e

Accessing Individual Characters from a String

The charAt() method can be used to access individual character from a string, as

str.charAt(index). The index specified should be a number between 0 and str.length - 1.

If no index is given, the first character in the string is returned, since the default is 0.

Figure 51 – Accessing Individual Characters from a String (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-get-started.php)

However, there is a good alternative to this procedure. Since ECMAScript 5, strings can

be treated like read-only arrays, and individual characters can be seen from a string

using square brackets ([]) instead of the charAt() approach, as follows below:

Figure 52 – Accessing Individual Characters from a String using square brackets ([]) instead of the charAt()

approach (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php

49 | P a g e

Splitting a String into an Array

The split() method can be used to fragment a string into an array of strings, using the

syntax str.split(separator, limit). The separator argument stipulates the string at which

each split should happen, while the limit arguments specifies the maximum length of the

array. If separator argument is omitted or not found in the specified string, the entire

string is allocated to the first element of the array.

Figure 53 – Splitting a String into an Array (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

get-started.php)

To split a string into an array of characters, an empty string ("") should be stipulated as

a separator, as this example shows.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-get-started.php
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=split-a-string-into-an-array-of-characters

50 | P a g e

JavaScript Numbers

There are two types of numbers in JavaScript:

• Regular numbers in JavaScript are stored in 64-bit format IEEE-754, otherwise

known as “double precision floating point numbers”. These are the most

commonly used type of numbers.

• BigInt numbers, to represent integers of random length. They are sometimes

needed, because a regular number cannot securely exceed 253 or be less than

-253.

There are more ways to write a number. For instance, the obvious way to write 1 billion

would be ‘1000000000’ or ‘1_000_000_000’, using the underscore as a separator. In

this case, the underscore is the “syntactic sugar”, meaning that it makes the number

clearer to read. The JS engine ignores underscores between digits, so it is the exact

same one billion from the first case.

However, in the real world, everyone most certainly will try to avoid writing long

sequences of zeros. Something like “1bn” for a billion or “2.5 bn” for 2 billion 500 million

seems more reasonable. The same principle applies for most large numbers. That being

said, it is possible to shorten a number in JS, by adding the letter “e” to it and specifying

the quantity of zeroes:

Figure 54 – Specifying the quantity of zeroes (Source: https://javascript.info/number)

So, e multiplies the number by 1 with the given zeroes count.

1e3 === 1 * 1000; // e3 means *1000

1.23e6 === 1.23 * 1000000; // e6 means *1000000

https://javascript.info/number

51 | P a g e

The same principle aplies for small numbers. For instance, what should be written for 1

microsecond (one millionth of a second)?

let mсs = 0.000001;

Just like the aforementioned case with the big numbers, using "e" can be helpful. To

avoid writing the zeroes explicitly, the following can be written:

let mcs = 1e-6; // six zeroes to the left from 1

There are 6 zeroes in 0.000001. Then, it is not hard to conclude 1e-6.

Therefore, a negative number after "e" implies a division by 1 with the given number of

zeroes, as follows:

Figure 55 – The division of 1 by the given number of zeroes (Source: https://javascript.info/number)

Hex, binary, and octal numbers

Hexadecimal numbers are commonly utilized in JavaScript to embody colours, encode

characters, and for many other purposes. So obviously, there is a quicker way to write

them: 0x and then the number, as follows:

Figure 56 – The 0x way to speed up JS processes (Source: https://javascript.info/number)

https://javascript.info/number
https://javascript.info/number

52 | P a g e

Binary and octal numeral systems are not often utilized, but as well supported using the

0b and 0o (zero, o) prefixes:

Figure 57 – The 0b and 0o prefixes for binary and octal numeral systems (Source: https://javascript.info/number)

There are merely 3 numeral systems with this support. For further numeral systems, the

function parseInt should be used.

toString(base) method

The num.toString(base) method returns a string representation of num in the numeral

system with the provided base, as follows:

Figure 58 – The num.toString(base) method (Source: https://javascript.info/number)

The base can vary from 2 to 36. By default, it’s 10.

There are general use cases for this:

• base=16 is applied for hex colours, character encodings etc, digits can

be 0..9 or A..F.

• base=2 is mainly for correcting bitwise operations, digits can be 0 or 1.

• base=36 is the maximum, digits can be 0..9 or A..Z. The entire Latin alphabet is

used to represent a number. A curious, but useful case for 36 is when it is needed

to turn a long numeric identifier into something shorter, for example to make a

short url.

https://javascript.info/number
https://javascript.info/number

53 | P a g e

There is a specific case to be noted. When two dots are spotted in 123456..toString(36),

this is not a typo. When the programmer wants to call a method directly on a number, it

is needed to place two dots (‘..’) after it.

If a single dot is placed as follows (‘123456.toString(36)’), it would be an error, as

JavaScript syntax entails the decimal part after the first dot. And if the programmer

places one more dot, then JavaScript knows that the decimal part is empty and now

goes the method.

Rounding

One of the most applied operations when operating with numbers is rounding.

There are some built-in functions for rounding:

• Math.floor

Rounds down: 3.1 turn into 3, and -1.1 converts -2.

• Math.ceil

Rounds up: 3.1 becomes 4, and -1.1 converts -1.

• Math.round

Rounds to the nearest integer: 3.1 becomes 3, 3.6 becomes 4, the middle case: 3.5

rounds up to 4 too.

• Math.trunc (not supported by Internet Explorer)

Eliminates anything after the decimal point without rounding: 3.1 turn out to be 3, -1.1

becomes -1.

These functions cover all the potential ways to cope with the decimal part of a number.

But what about rounding the number to n-th digit after the decimal?

For example, to round 1.2345 to two digits (1.23).

There are two ways to do so:

1. Multiply-and-divide.

E.g., to round the number to the 2nd digit after the decimal, one can multiply the number

by 100 (or a bigger power of 10), call up the rounding function and then divide it back.

54 | P a g e

2. The toFixed(n) method rounds the number to n digits after the point and returns

a string representation of the result.

Figure 58 – The toFixed(n) method (Source: https://javascript.info/number)

This rounds up or down to the nearest value, like Math.round:

Figure 59 – The toFixed(n) method – continuation (Source: https://javascript.info/number)

It should be stated that result of toFixed is a string. If the decimal part is shorter than

required, zeroes are attached to the end:

Figure 60 – The toFixed(n) method – final exposition (Source: https://javascript.info/number)

Imprecise calculations

On the inside, a number is represented in 64-bit format IEEE-754, so there are precisely

64 bits to store a number: 52 to store the digits; 11 to store the position of the decimal

point (zero for integer numbers), and 1 bit is for the sign.

If a number is too big, it would pour out the 64-bit storage, possibly giving an infinity.

Something that ends to happen quite often is the loss of precision.

Considering the following test:

Figure 61 – First test for imprecise calculations (Source: https://javascript.info/number)

https://javascript.info/number
https://javascript.info/number
https://javascript.info/number
https://javascript.info/number

55 | P a g e

As it looks, strangely the result from the 0.1+0.2 sum is a false 0.3. What could it be,

then?

Figure 62 – Second test for imprecise calculations (Source: https://javascript.info/number)

As it could be imagined, there are more consequences than an incorrect comparison in

this case. Pretending that a purchase is being made on an online shop and the visitor

puts $0.10 and $0.20 goods into his/her cart… the total amount of the order would be

$0.30000000000000004. That would be quite surprising.

Why does a situation like this happen?

A number is stored in memory in its binary form, a sequence of bits – ones and zeroes.

However, fractions like 0.1, 0.2 that seem simple in the decimal numeric system are in

fact unending fractions in their binary form.

That is to say, what is 0.1? It is one divided by ten 1/10, one-tenth. In decimal numeral

system such numbers are easily representable. Comparing it to one-third: 1/3. It

becomes an endless fraction 0.33333(3).

So, division by powers 10 is guaranteed to work well in the decimal system, but division

by 3 is not. For the same reason, in the binary numeral system, the division by powers

of 2 is guaranteed to work, but 1/10 becomes an endless binary fraction.

There is just no way to store exactly 0.1 or exactly 0.2 using the binary system, just like

there is no way to store one-third as a decimal fraction.

The numeric format IEEE-754 resolves this by rounding to the closest possible number.

These rounding rules normally do not allow one to sees that “tiny precision loss”, but it

exists.

https://javascript.info/number

56 | P a g e

Figure 63 – Final test for imprecise calculations (Source: https://javascript.info/number)

When two numbers are summed, their ‘’precision losses’’ come together. Therefore 0.1

+ 0.2 is not 0.3 precisely.

The most reliable method to cope with this situation is toFixed(n):

Figure 64 – The toFixed(in) method (Source: https://javascript.info/number)

It should be stated that toFixed(n) returns a string every time. It ensures that it has 2

digits after the decimal point. That is quite useful if there is need to show $0.30 for e-

shopping purposes.

Tests: isFinite and isNaN

Previously, those two special numeric values have been described. Infinity (and -

Infinity) is a special numeric value that is greater (less) than anything. NaN represents

an error. Both belong to the type number, but are not “normal” numbers, so there are

special functions to check for them:

• isNaN(value) converts its argument to a number and then tests it for being NaN:

Figure 64 – The isNaN(value) method (Source: https://javascript.info/number)

https://javascript.info/number
https://javascript.info/number
https://javascript.info/number

57 | P a g e

• isFinite(value) converts its argument to a number and returns true if it’s a regular

number, not NaN/Infinity/-Infinity;

•

Figure 65 – The isFinite(value) method (Source: https://javascript.info/number)

parseInt and parseFloat

Numeric conversion using a plus + or Number() is rigorous. If a value is not exactly a

number, it fails. The only exception is spaces at the beginning or at the end of the string,

as they are ignored.

However, in real life there are often values in units, as "100px" or "12pt" in CSS.

Likewise, in many countries the currency symbol goes after the amount, so having the

example of “19€", the programmer would like to extract a numeric value out of that.

That’s what parseInt and parseFloat are for.

They “read” a number from a string until they cannot. In case of an error, the collected

number is returned. The function parseInt returns an integer, whereas parseFloat will

return a floating-point number:

Figure 66 – parseInt and parseFloat (Source: https://javascript.info/number)

https://javascript.info/number
https://javascript.info/number

58 | P a g e

Other math functions

JavaScript owns a built-in Math object which includes a small library of mathematical

functions and constants:

• Math.random()

Returns a random number from 0 to 1 (not including 1).

• Math.max(a, b, c...) / Math.min(a, b, c...)

Returns the greatest/smallest from the arbitrary number of arguments.

• Math.pow(n, power)

Returns n raised to the given power.

JavaScript If…Else Statements

As many other programming languages, JavaScript also allows to write code that

execute different actions based on the results of a logical or comparative test conditions

at run time. Thus, test conditions can be created as expressions that evaluates to either

true or false and, based on these results, certain actions can be performed.

There are several conditional statements in JavaScript that can be used to make

decisions:

• The if statement;

• The if...else statement;

• The if...else if....else statement;

• The switch...case statement.

The if statement

The if statement is used to execute a block of code only if the specified condition is

evaluated as being true. This is the simplest JS’s conditional statements and can be

written as:

59 | P a g e

Figure 67 – Code to create an if condition (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-

else-statements.php)

A practical example can be quite demonstrative of this feature’s usefulness. If the

current day is Friday, the coding shown on Figure 68 will display a message saying

“Have a nice weekend”:

Figure 68 – If...statement created to display a “Have a nice weekend” message in case is Friday (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php)

The if…else statement

The decision-making process of JS can be enhanced by providing an alternative choice

through adding an else statement to the if statement. The if…else statement allows to

execute one block of code if the specified condition evaluates as true and another block

of code if it evaluates as false.

Figure 69 – Code to create an if…else condition (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-if-else-statements.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php

60 | P a g e

The example from Figure 68 will be applied to test the if…else statement. This time, the

“Have a nice weekend!” message will be displayed in case the current day is Friday (as

the previous case), however, it will emit the “Have a nice day” message if it is not Friday.

Figure 70 – Code to create an if…else condition, displaying a “Have a nice day” or “Have a nice weekend”

message depending on the case (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-

statements.php)

The Ternary Operator

The ternary operator gives a shorthand way of writing the if...else statements. It is

characterized by the question mark (‘?’) symbol and it takes three operands: a condition

to check, a result for true, and a result for false. Its basic syntax is as follows:

var result = (condition) ? value1 : value2

If the condition is evaluated as true, the value1 will be returned, if not value2 will be

returned.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php

61 | P a g e

Figure 71 – How to apply the ternary operator (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-if-else-statements.php)

JavaScript Switch…Case Statements

The switch..case statement is an alternate scenario to the if...else if...else statement,

which does nearly the same thing. The switch...case statement analyses a variable or

expression against a series of values until it finds a match, and then executes the block

of code corresponding to that match. Its syntax is as follows:

Figure 72 – Syntax for switch…case statements (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-if-else-statements.php)

This example displays the name of the day of the week the reader is in.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-if-else-statements.php
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=switch-case-statement

62 | P a g e

The switch...case statement diverges from the if...else statement in one crucial way.

The switch statement executes line by line and when JavaScript finds a case clause that

evaluates to true, it does not only performs the code corresponding to that case clause,

but also executes all the successive case clauses till the end of the switch block

automatically.

To prevent this, a break statement must be included after each case (as can be checked

on Figure 73). The break statement informs the JS interpreter to break out of the

switch...case statement block once it executes the code linked to the first true case.

The break statement is yet not required for the case or default clause when it appears

at last in a switch statement. However, it is a good programming practice to dismiss the

last case, or default clause in a switch statement with a break. It prevents a possible

programming error later on if another case statement is included in the switch statement.

The default clause is voluntary, which stipulates the actions to be made if no case

matches the switch expression. The default clause does not have to be the last clause

to be found in a switch statement.

Each case value must be exclusive within a switch statement. Still, different cases do

not need to have a unique action. Several cases can share the same action.

JavaScript Arrays

Arrays are complex variables that allow to store more than one value or a group of

values under a single variable name. JavaScript arrays can store any valid value,

including strings, numbers, objects, functions, and at the same time other arrays,

therefore enabling to create more complex data structures such as an array of objects

or an array of arrays.

63 | P a g e

In the following example, the name of colours will be stored in a JavaScript code:

Figure 73 – Storing the name of colours in a JS code (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-arrays.php)

However, it may be quite difficult and tiring to store multiple elements in variables,

opposite to only three in the case above. Additionally, using so many variables at the

same time and keeping track of them all will be a very tricky task. And here array comes

into play. Arrays solve this problem by providing an ordered structure for storing multiple

values or a group of values.

Creating an Array

The easiest way to create an array in JavaScript is enclosing a comma-separated list of

values in square brackets ([]), as shown in the following syntax:

var myArray = [element0, element1, ..., elementN];

64 | P a g e

Figure 74 – Creating an Array (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php)

Acessing the elements of an Array

Array elements can be accessed by their index utilizing the square bracket notation. An

index is a number that represents an element's position in an array.

Array indexes are zero-based. This means that the first item of an array is stored at

index 0, not 1, the second item is stored at index 1, and so on. Array indexes start at 0

and go up to the number of elements minus 1. So, array of five elements would have

indexes from 0 to 4.

Figure 75 – How to get individual array element by their index (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-arrays.php)

65 | P a g e

Getting the Length of an Array

The length property returns the length of an array, which is the total number of elements

included in the array. Array length is always greater than the index of any of its element.

Figure 76 – Getting the Length of an Array (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

arrays.php)

Looping Through Array Elements

for loop can be used to gain access to each element of an array in sequential order, as

follows:

Figure 77 – Looping through array elements (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

arrays.php)

ECMAScript 6 has introduced a simpler way to iterate over array element, which is for-

of loop. In this loop there is no need to initialise and keep track of the loop counter

variable (i).

66 | P a g e

Adding New Elements to an Array

To add a new element at the end of an array, simply use the push() method, as follows:

Figure 78 – Adding New Elements to an Array (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-arrays.php)

Likewise, to add a new element at the beginning of an array the unshift() method should

be used, as follows:

Figure 79 – Add a new element at the beginning of an array using the unshift() method (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php)

Removing Elements from an Array

To eliminate the last element from an array you can use the pop() method. This method

returns the value that was popped out.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php

67 | P a g e

Figure 80 – Removing Elements from an Array (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-arrays.php)

Adding or Removing Elements at any Position

The splice() method is a very flexible array method that allows to add or remove

elements from any index, using the syntax arr.splice(startIndex, deleteCount,

elem1, ..., elemN)

This method takes three parameters: the first is the index at which to start splicing the

array, it is required; the second is the number of elements to remove (0 should be used

in case the programmer does not want to remove any elements), it is optional; and the

third parameter is a set of replacement elements, it is also optional.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php

68 | P a g e

Figure 81 – Adding or Removing Elements at any Position (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-arrays.php)

The splice() method returns an array of the deleted elements, or an empty array if no

elements were deleted, as it can be seen in Figure 81. If the second argument is absent,

all elements from the start to the end of the array are removed.

Unlike slice() and concat() methods, the splice() method modifies the array on which it

is called on.

Creating a String from an Array

There may be situations in which a programmer simply intends to create a string by

joining the elements of an array. To do so, he/she can use the join() method. This

method takes an optional parameter which is a separator string that is added in between

each element. If you omit the separator, then JavaScript will use comma (,) by default.

Figure 81 – Creating a String from an Array (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

arrays.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php#slice
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php#concat
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php

69 | P a g e

An array can also be converted to a comma-separated string using the toString(). This

method does not allow the separator parameter as join().

Merging Two or More Arrays

The concat() method can be used to combine two or more arrays. This method does not

change the prevailing arrays, instead it returns a new array.

Figure 82 – Merging Two or More Arrays (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

arrays.php)

The concat() method can take any number of array arguments, so an array can be

created from any number of other arrays, as shown in the following example:

Figure 83 – The concat() method (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php

70 | P a g e

Searching Through an Array

The indexOf() and lastIndexOf() methods can be used for searching an array for a

specific value. If the value is found, both methods return an index representing the array

element. If the value is not found, -1 is returned. The indexOf() method returns the first

one found, although the lastIndexOf() returns the last one found. Both methods also

recognise an optional integer parameter from index which specifies the index within the

array at which to start the search.

Figure 84 – Searching through an array (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

arrays.php)

includes() method can also be used to find out whether an array involves a certain

element or not. This method takes the same parameters as indexOf() and lastIndexOf()

methods, but it returns true or false instead of index number.

Figure 85 – Searching through an array using the includes () method (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php

71 | P a g e

To search an array based on certain condition the JavaScript find() method can be used,

which has been recently introduced in ES6. This method returns the value of the first

element in the array that fulfils the provided testing function. If not, it returns undefined.

The find() method simply searches the first element that meets the provided testing

function. Still, if the programmer intends to find out all the matched elements, the filter()

method can be used. It creates a new array with all the elements that successfully

passes the given test, as can be checked in this example.

JavaScript Sorting Arrays

Sorting is a popular task when working with arrays. It can be used, for example, to

display the city or country names in alphabetical order. The JavaScript Array object has

a built-in method sort() for sorting array elements in alphabetical order.

Figure 86 – The built-in method sort() for sorting array elements in alphabetical order (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php)

To reverse the order of the elements of an array, the reverse () method can be used.

It reverses an array in such a way that the first array element becomes the last, and

vice-versa. The sort() and reverse() method changes the initial array and return a

reference to the same array, as it can be checked here.

For sorting numeric arrays, it is not advisable to use the sort () method, as it can

produce unexpected results. For this purpose, programmers should pass a compare

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=filter-an-array
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=reverse-the-order-of-an-array

72 | P a g e

function, as when a compare function is specified, array elements are sorted according

to the return value of the compare function.

For example, when comparing a and b:

• If the compare function returns a value less than 0, then a comes first.

• If the compare function returns a value greater than 0, then b comes first.

• If the compare function returns 0, a and b remain unchanged regarding each

other, but grouped with respect to all other elements.

Therefore, since 5 - 20 = -15 which is less than 0, therefore 5 comes first, likewise 20 -

10 = 10 which is greater than 0, therefore 10 comes before 20, likewise 20 - 75 = -55

which is less than 0, so 20 comes before 75, similarly 50 comes before 75, and so on.

This can be checked in this example.

To find the maximum and minimum value in an Array, the apply() method in

combination with the Math.max() and Math.min() can be used, as follows in this

example. The apply() method offers an accessible way to pass array values as

arguments to a function that accepts multiple arguments in an array-like manner, but not

an array. Then, the resulting statement Math.max.apply(null, numbers) in the example

above is equivalent to the Math.max (3, -7, 10, 8, 15, 2).

Finally, to sort an array of objects the sort() method can be used. In this example, it is

shown how to sort an array of objects by property values.

JavaScript Loops

Loops are applied to perform the same block of code many times if a certain condition

is encountered. The key idea behind a loop is to mechanize the repetitive tasks within a

program to save the time and effort. JavaScript now supports five different types of

loops:

• while — loops through a block of code if the condition specified evaluates to true.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=sort-a-numeric-array-correctly-using-compare-function
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=find-the-maximum-and-minimum-value-in-an-array
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=find-the-maximum-and-minimum-value-in-an-array
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=sort-an-array-of-objects

73 | P a g e

• do…while — loops through a block of code one time; then the condition is

evaluated. If the condition is true, the statement is repeated if the specified

condition is true.

• for — loops through a block of code until the counter reaches a specified number.

• for…in — loops through the properties of an object.

• for…of — loops over iterable objects such as arrays, strings, etc.

The while loop

This is the easiest looping statement provided by JS. It loops through a block of code if

the specified condition evaluates to true. Once the condition fails, the loop is stopped.

The generic syntax of the while loop is:

while(condition) {

 // Code to be executed

}

In this example, a loop that keeps on running as long as the variable i ≤ 5. As it can be

checked, i will increase by 1 each time the loop runs. Programmers must ensure that

the condition specified in the loop can eventually go false. If not, the loop will never stop

iterating (infinite loop).

The do…while loop

The do-while loop is a variant of the while loop, which assesses the condition at the end

of each loop iteration. With a do…while loop, the block of code is executed once, and

then the condition is evaluated, if the condition is true, the statement is repeated if the

specified condition evaluated to is true. Its common syntax is:

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=while-loop

74 | P a g e

do {

 // Code to be executed

}

while(condition);

The JavaScript code in this example defines a loop that starts with i=1. It will then

produce the output and increase the value of variable i by 1. After that the condition is

evaluated, and the loop will continue to run if i ≤ 5.

The for loop

It repeats a block of code if a certain condition is met. It is normally used to implement

a block of code for certain number of times. Its syntax is:

for(initialization; condition; increment) {

 // Code to be executed

}

The parameters of the for loop statement have the following implications:

• initialisation — it is used to set the counter variables and evaluated once entirely

before the first execution of the body of the loop.

• condition — it is evaluated at the beginning of each iteration. If it evaluates to

true, the loop statements achieve. If it evaluates to false, the execution of the loop

ends.

• increment — it updates the loop counter with a new value each time the loop

runs.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=do-while-loop

75 | P a g e

This example defines a loop that begins with i=1. The loop will go on until the value of i

≤ 5. The variable i will increase by 1 each time the loop runs.

The for...in Loop

It is a special type of a loop that repeats over the properties of an object, or the elements

of an array. Its syntax is:

for(variable in object) {

 // Code to be executed

}

The loop counter i.e., variable in the for-in loop is a string, not a number. It comprises

the name of present property or the index of the current array element.

This example demonstrates how to loop through all properties of a JS object.

The for...of Loop

ES6 presents a new for-of loop which allows to iterate over arrays or other iterable

objects (e.g., strings) very simply. Additionally, the code inside the loop is executed for

each element of the iterable object. This example shows how to loop trough arrays and

strings using this loop.

JavaScript Functions

A function is a set of statements that accomplish specific tasks and can be kept and

maintained independently. Functions give a way to create reusable code packages

which are more manageable and easier to debug. Some advantages of using functions

are as follows:

• Functions decreases the repetition of code within a program — Function

allows to extract frequently used block of code into a single component. This way

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=for-loop
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=for-in-loop
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=es6-for-of-loop

76 | P a g e

it is possible to perform the same task by calling this function wherever needed

within a script without having to copy and paste the same block of code over and

over.

• Functions makes the code much easier to maintain — Since a function

created once can be applied many times, any changes made inside a function

are automatically implemented at all the places without affecting the respective

files.

• Functions makes it easier to get rid of the errors — When the program is split

into functions, if any error arise, the programmer knows precisely what function

is causing the error and where to spot it. Consequently, fixing errors becomes

much simpler.

Defining and Calling a Function

The declaration of a function starts with the function keyword, followed by the name of

the function to be created, then followed by parentheses, and lastly by the function's

code between curly brackets {}. To declare a function, the following syntax applies:

function functionName() {

 // Code to be executed

}

This simple example displays a “Hello” message.

Once a function is defined, it can be called from anywhere in the document, by typing

its name followed by a set of parentheses, like sayHello() in the aforementioned

example.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=define-and-call-a-function

77 | P a g e

Adding Parameters to Functions

Parameters can be specified when defining a function to accept input values at run time.

The parameters act like placeholder variables within a function; they are replaced at run

time by the values (known as argument) offered to the function at the time of request.

Parameters are set on the first line of the function inside the set of parentheses, as

follows:

function functionName(parameter1, parameter2, parameter3) {

 // Code to be executed

}

The displaySum() function in this example gets two numbers as arguments, simply add

them as one and then display the result in the browser. There is no limit for defining

parameters. Nevertheless, for each parameter specified, a corresponding argument

requires to be passed to the function when it is called, if not its value becomes undefined.

Default Values for Function Parameters

With ES6, it is possible to specify default values to the function parameters. This implies

that if no arguments are provided to function when it is called, these default parameters

values will be used. This example is quite explanative regarding how valuable this

feature is, since to achieve the same result, the prior procedure was this one.

Returning Values from a Function

A function can return a value back to the script that called the function as a result, by

utilizing the return statement. The value may be of any type (i.e., arrays and objects).

The return statement typically placed as the last line of the function before the closing

curly bracket and ends it with a semicolon, as displayed here.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=add-parameters-to-a-function
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=pass-arguments-to-a-function
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=es6-function-with-default-parameter-values
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=setting-default-values-for-function-parameters-in-older-versions
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=return-a-value-from-a-function

78 | P a g e

A function can does not return multiple values. Still, similar results can be obtained by

returning an array of values, as exhibited here.

Working with Function Expressions

The syntax used before to create functions is called function declaration. There is

another syntax for building a function – function expression. Once stored in a variable,

the variable can be utilized as a function. The syntax of the function declaration and

function expression seems very similar, but they vary in the way they are evaluated. As

observed in the previous example, the function expression gave an exception when it

was invoked before it is defined, but the function declaration executed effectively. JS

analyses declaration function before the program executes. Hence, it does not make a

difference if the program invokes the function before it is defined, as JavaScript has

elevated the function to the top of the current scope in the background. The function

expression is not assessed until it is assigned to a variable; consequently, it is still

undefined when invoked.

Understanding the Variable Scope

Variables can be declared anywhere in JS. However, the location of the declaration will

establish the extent of a variable's availability within the JavaScript program – this

process is also called variable scope. By default, variables declared within a function

have local scope, which means they cannot be viewed or controlled from outside of that

function, as shown here. Though, any variables declared in a program outside of a

function has global scope, wherever that script is located concerning the function, as it

can be checked here.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=return-multiple-values-from-a-function
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=function-expression
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=assign-a-function-to-a-variable
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=function-declaration-vs-function-expression
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=global-variable
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=global-variable

79 | P a g e

JavaScript Objects

JavaScript is an object-based language and there nearly everything is an object or acts

like one. Thus, to work with JS successfully and efficiently, programmers need to

understand how objects work, as well as how to create objects and use them.

A JavaScript object is simply a collection of named values. They are typically referred

to as properties of the object. Being an array a collection of values, in which each value

has an index (a numeric key) starting from zero and incrementing by one for each value.

An object is like an array, but the difference is that the programmer defines the keys,

(name, age, gender, etc.).

Creating an object

Programmers can create objects with curly brackets, including a voluntary list of

properties as well. A property can be “key:value” pair, in which the key (or property

name) is always a string, and value (or property value) can be any data type (strings,

numbers, Booleans, arrays, functions, etc.). Moreover, properties with functions as their

values are frequently called methods to distinguish them from other features. A JS object

may be as this. This example creates an object called person, which has 3 properties

(name, age and gender) and one method displayName(). This method shows the value

of this.name, which agrees to person.name. This is the easiest and ideal way to create

a new object in JF, which is known as object literals syntax. The property names

generally do not need to be quoted except if they are reserved words, or if they contain

spaces or special characters (anything other than letters, numbers, and the _ and $

characters), or if they start with a number, as shown here.

Accessing Object’s Properties

In order to access or get the value of a property, the dot (.) can be applied, as well as

the square bracket ([]) notation, as this example shows. The dot notation is simpler to

read and write, but it cannot always be used. If the name of the property is not valid (for

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=creating-objects
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=quoting-property-names-of-an-object
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=get-properties-values-of-an-object

80 | P a g e

example, if it contains special characters or spaces), the dot notation cannot be used,

but the bracket notation instead. It presents much more flexibility than dot notation and

additionally allows to identify property names as variables as a replacement for string

literals.

Looping Through Object’s Properties

Programmers can iterate through the key-value pairs of an object using the for...in loop.

It is specifically enhanced for iterating over object's properties, as seen here.

Setting Object's Properties

Likewise, new properties can be set, or the existing one can be updated by using the

dot (.) or bracket ([]) notation, as demonstrated here.

Deleting Object's Properties

The delete operator can be applied to entirely delete properties from an object.

Removing is the only way to really get rid of a property. Adjusting the property to

undefined or null simply changes the value of the property, it does not remove property

from the object. So, it has no effect on variables or declared functions. Nevertheless,

programmers should avoid delete operator for the purpose of deleting an array element,

as it does not modify the array's length, it just drops a hole in the array.

Calling Object's Methods

An object's method can be accessed the same way as one would access properties—

using the dot notation or applying the square bracket notation, as can be checked here.

Manipulating by Value vs. Reference

JS objects are reference types, which means that when the programmer makes copies

of them, they are simply copying the references to that object, while primitive values like

strings and numbers are assigned or copied as a whole value. This example is quite

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=access-properties-of-an-object-using-bracket-notation
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=loop-through-an-object
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=set-the-properties-of-an-object
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=call-the-methods-of-an-object
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=copy-by-value

81 | P a g e

demonstrative of this idea. As it could be observed, a copy of a variable message has

been done and it changed the value of that same copy. Both variables remain distinct

and separate. However, if the same principle is applied to an object, a different result

will be gathered. So, any changes done to the variable user also interfere with the person

variable, as both variables refer to the same object. Therefore, merely copying the object

does not really clone it but copies the reference to that object.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=copy-by-reference
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=copy-by-reference

82 | P a g e

5.2. JavaScript & DOM

What is the Document Object Model (DOM)?
DOM is created by the browser when a web page is loaded in HTML or XML documents.

It is used to define the logical structure of these documents and to access and alter their

elements.

The HTML DOM refers to the Document Object Model of the HTML documents, whereas

the XML DOM refers to the Document Object Model of the XML documents. In this

subchapter, we will focus on the HTML DOM which can be used to access and

manipulate HTML documents via JavaScript.

The DOM is constructed as a hierarchical tree of objects that include all parts of an

HTML document such as elements, attributes, text, etc. These individual objects of the

tree are also known as nodes, and they are comprised of parent and child nodes. In

graphical form, it will look something like the diagram provided below.

Figure 87 – HTML DOM Tree of Objects (Source: https://www.w3schools.com/js/js_htmldom.asp)

Within the HTML DOM, JavaScript can do the following:

https://www.w3schools.com/js/js_htmldom.asp

83 | P a g e

• change all the HTML elements in the page

• change all the HTML attributes in the page

• change all the CSS styles in the page

• remove existing HTML elements and attributes

• add new HTML elements and attributes

• react to all existing HTML events in the page

• create new HTML events in the page

JavaScript DOM Selectors

Selecting DOM Elements in JavaScript

JavaScript is used to get or modify the content or value of the HTML elements of the

web page and apply some special effects such as animations or hide. To be able to

perform any action, you need to find or select the target HTML element.

We will go through some of the most common ways of selecting elements on a page

and manipulating them with JavaScript.

Selecting the Topmost Elements

The topmost elements can be accessed directly as document properties.

For instance, to access the <html> element, use the document.documentElement

property. For the <head> element, you can use the document.head property and for the

<body> element, the document.body property.

Let’s see an example to understand all of this a bit better.

84 | P a g e

Figure 88 - Topmost Elements Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-selectors.php)

* It is important to note that the document.body should not be used before the <body>

element since it will return null. The program needs to go through the <body> element

first to access the document.body property.

Let’s look at this example to understand why the <body> will be null:

 Figure 89 - Topmost Elements Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-selectors.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php

85 | P a g e

This example demonstrates what we saw in the beginning about the hierarchical

relationships that exist between nodes. You need to be mindful that in order to access

the document.body property, you will have to start from the <body> element to avoid

null values.

Selecting Elements by ID

If you want to find or select an HTML element, the easiest way is to select it is based on

its unique ID. You can do this with the getElementById() method.

In the following example, the element that has an ID attribute id="mark" is selected and

highlighted:

Figure 90 - Selecting Elements by ID Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-selectors.php)

The getElementById() method is used to return the element as an object if a matching

element is found. Otherwise, it will return null.

* Keep in mind that any HTML element can have an id attribute, which must be a unique

value within a page. This essentially means that no two elements can have the same

id.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php

86 | P a g e

Selecting Elements by Class Name

If you want to select all the elements with specific class names, use the

getElementsByClassName() method. It will return an array-like object of all child elements which

have all the given class names.

Let’s look at an example:

Figure 91 – Selecting Elements by Class Name Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-selectors.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php

87 | P a g e

Selecting Elements by Tag Name

If you want to select elements by their tag name, use the getElementsByTagName()

method. This method will also return an array-like object of all child elements which have

the given tag name.

Let’s look at an example to understand this a bit better:

Figure 92 - Selecting Elements by Tag Name Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-selectors.php)

Selecting Elements with CSS Selectors

CSS Selectors offer a very powerful and efficient way to select HTML elements in a

document. To select elements that match the specified CSS Selector, you can use the

querySelectorAll() method.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php

88 | P a g e

This method will return a list of all the elements that match the specified selectors.

Follow the example below to see how you can examine this list like an array:

Figure 93 - Selecting Elements with CSS Selectors Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-selectors.php)

* Please note that the querySelectorAll() method supports CSS pseudo-classes such as

:first-child, :last-child, :hover, etc. However, this method will always return an empty list

for CSS pseudo-elements like ::before, ::after, ::first-line, etc.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-selectors.php

89 | P a g e

JavaScript DOM Styling

Styling DOM Elements in JavaScript

You can also change the visual presentation of HTML documents in a dynamic way by

using JavaScript to apply different styles to HTML elements. Almost all element styles

can be set such as fonts, colours, margins, borders, background images, text alignment,

width and height, position, and so on.

Here, we will go through various methods that can be used to set styles in JavaScript.

Setting Inline Styles on Elements

The style attribute is used to apply inline styles directly to the specific HTML element.

The style property is used in JavaScript to get or set the inline style of an element.

In the following example, colour and font properties will be set for an element with

id="intro":

Figure 94 - Inline Styles on Elements Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-styling.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php

90 | P a g e

Naming Conventions of CSS Properties in JavaScript

It is important to mention that many of CSS properties contain hyphens (-) in their names

such as font-size, background-image, text-decoration, etc. However, in JavaScript, the

hyphen is a reserved operator that signifies a minus sign. Therefore, it is not possible to

write an expression in this way: elem.style.font-size.

To overcome this issue, CSS property names in JavaScript that contain one or more

hyphens are converted to intercapatisalised style words. This essentially means that the

hyphens are removed and the first letter after the hyphen is capitalised. For instance,

the CSS property font-size become fontSize in DOM property.

Getting Style Information from Elements

The style property is also used to get the styles applied to HTML elements.

The example below will get style information from the element with id="intro":

Figure 95 - Style property – Example (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-

styling.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php

91 | P a g e

The style property isn’t the most useful when it comes to getting style information from

the elements since it only returns the style rules that are set in the element’s style

attribute and not those that come from elsewhere such as style rules in the embedded

style sheets, or external style sheets.

If you want to get the values of all CSS properties that are used to render an element

you can use the window.getComputedStyle() method, as shown in the following

example:

Figure 96 - window.getComputedStyle() – Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-styling.php)

* Keep in mind that the value 700 for the CSS property font-weight is the same as the

keyword bold. The colour keyword red is the same as rgb(255,0,0), which is the rgb

notation of a colour.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php

92 | P a g e

Adding CSS Classes to Elements

Another way to get or set CSS classes to HTML elements is by using the className

property. Class is a reserved word in JavaScript; thus, JavaScript uses the className

property to refer to the value of the HTML class attribute.

Let’s look at the following example to learn how to add a new class, or replace all existing

classes to a <div> element with id="info":

Figure 97 - Adding Classes to Elements Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-styling.php)

An even better way to work with CSS classes is by using the classList property to get,

set or remove CSS classes easily from an element. This property is supported in all

major browsers except Internet Explorer before version 10.

Let’s see an example of this property:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php

93 | P a g e

Figure 98 - classList property - Adding Classes to Elements Example (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php)

JavaScript DOM Get Set Attributes

Working with Attributes

Attributes are special words used inside the start tag of an HTML element to control the

tag’s behaviour or provide more information about the tag.

In this section, we will go through several methods of adding, removing or changing an

HTML element’s attribute.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-styling.php

94 | P a g e

Getting Element's Attribute Value

To get the current value of an element’s attribute, you can use the getAttribute() method.

If that particular attribute is not found on the element, it will return null.

Let’s see the following example below:

Figure 99 - getAttribute() method – Getting Element’s Attribute Value Example (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php)

Setting Attributes on Elements

If you want to set an attribute on a specified element, you can use the setAttribute()

method. If the attribute already exists on the element, the value will be updated. If not,

a new attribute will be added with specified name and value.

In the following example, we will add a class and a disabled attribute to the <button>

element:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php

95 | P a g e

Figure 100 - setAttribute() method – Setting Attributes on Elements Example (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php)

If you want to update or change the value of an existing attribute on an element, you

can also use the setAttribute() method.

Let’s see an example that will update the value of the existing href attribute of an anchor

(<a>) element:

Figure 101 - setAttribute() method – Updating or Changing Attributes on Elements Example (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php)

Removing Attributes from Elements

To remove an attribute from a specific element, you can use the removeAttribute()

method.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php

96 | P a g e

Remember the href attribute that we changed from the anchor element; we are now

going to remove it in the following example:

Figure 102 - removeAttribute() method – Removing Attributes from Elements Example

(Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php)

JavaScript DOM Manipulation

Manipulating DOM Elements in JavaScript

So far, we have learnt how to select and style HTML DOM elements. Now, we will learn

how to add or remove DOM elements in a dynamic way, how to get their contents and

many more.

Adding New Elements to DOM

The document.createElement() method is used to create a new element in an HTML

document. It creates a new element; however, it does not add it to the DOM.

A separate step is needed to add it to the DOM, as shown in the example below:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-get-set-attributes.php

97 | P a g e

Figure 103 - Adding New Elements Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-manipulation.php)

In the example we just saw, the appendChild() is used to add the new element at the

end of any other children under the specified parent node.

You also have the option to add the new element before any other children, as shown

in the example below:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php

98 | P a g e

Figure 104 - Adding New Elements Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-manipulation.php)

Getting or Setting HTML Contents to DOM

If you want to get or set the contents of HTML elements, you can use the innerHTML

property. This property is used to set or get the HTML markup inside the element, which

contains content between its opening and closing tags.

Let’s look at an example to get a better understanding of this:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php

99 | P a g e

Figure 105 - Getting or Setting HTML Contents to DOM Example (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php)

As you can from the example, new elements are inserted quite easily into the DOM with

the innerHTML property. But this property replaces all the existing content of an element.

Therefore, if you do not want to replace the existing contents of an element, you can

use the insertAdjacentHTML() method. This method takes two parameters: the HTML

to be inserted and its position. The position must be one of the following: "beforebegin",

"afterbegin", "beforeend", and "afterend". It is also significant to note that this method is

supported in all major browsers.

In the following example, you can see how the positioning works:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php

100 | P a g e

Figure 106 - insertAdjacentHTML() method - Getting or Setting HTML Contents to DOM Example (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php)

* Keep in mind that for the beforebegin and afterend positions to work the node has to

be in the DOM tree and have a parent element.

* Also, when inserting an HTML into a page, be careful not to use user input that hasn't

been escaped/sanitised, to prevent XSS attacks.

Removing Existing Elements from DOM

To remove a child node from the DOM, you can use the removeChild() method. This

method will also return the removed node.

Let’s see the example below:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php

101 | P a g e

Figure 107 - Removing Existing Elements from DOM Example (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php)

You can also remove the child element without knowing the parent element. You can

find the child element and use the parentNode property to find its parent. It will return

the parent of the given node in the DOM tree.

Figure 108 - Removing Existing Elements from DOM Example (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php

102 | P a g e

Replacing Existing Elements in DOM

You also have the option of replacing an element in HTML DOM with another by using

the replaceChild() method. This method takes on two parameters: the node to be

inserted and the node to be replaced. The syntax is used is as follows:

parentNode.replaceChild(newChild, oldChild);

Figure 109 - Replacing Existing Elements in DOM Example (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php)

JavaScript DOM Navigation

Navigating Between DOM Nodes

By now, you should have a better idea of how to select individual elements on a web

page. There are many occasions where you would need to access child, parent or

ancestor element. We have talked about nodes in the beginning of this subchapter and

now we will see how we can access the different types of nodes.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-manipulation.php

103 | P a g e

DOM nodes have several properties and methods that let you navigate or traverse

through the tree DOM structure and make necessary changes quite easily.

Accessing the Child Nodes

The firstChild and lastChild properties allow you to access the first and last direct child

node of a node respectively. If a node does not have any child element, it will return null.

Let’s check out the example below:

Figure 110 - Accessing Child Nodes Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-navigation.php)

* Please note that the nodeName is a read-only property, which returns the name of the

current node as a string. For example, it will return the tag name of an element node,

#text for text node, #comment for comment node, #document for document node, and

so on.

In the example that we just saw, the nodeName of the first child node of the main DIV

elements returned #text instead of H1. This happens because white space, i.e., spaces,

tabs, newlines, and so on, are considered valid characters and they become part of the

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

104 | P a g e

DOM tree in the form of #text nodes. Then, the <div> tag that contains a newline before

the <h1> will create #text node.

In order to prevent this issue with the firstChild and lastChild returning #text or #comment

nodes, you can use the firstElementChild and lastElementChild properties as an

alternative. These properties will return only the first and last element of the node

respectively. However, this will not work in Internet Explores prior to Version 9.

The example below will give you a better understanding of this:

Figure 111 - Accessing Child Nodes Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-navigation.php)

To access all child nodes of a given element, you can also use the childNodes property.

Keep in mind that the first child node is assigned index 0.

See the example provided below:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

105 | P a g e

Figure 112 - Accessing Child Nodes Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-navigation.php)

Here, the childNodes returns all child nodes, including non-element nodes like text and

comment nodes.

If you want to get a collection of only elements, you should use the children property

instead.

Let’s look at an example to understand how to use this property:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

106 | P a g e

Figure 113 - Accessing Child Nodes Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-navigation.php)

Accessing the Parent Nodes

To access the parent node of a specific node in the DOM tree, you can use the

parentNode property.

* Note that the parentNode property will always return null values for document nodes

because they do not have parents.

In the following example, you can see how the parentNode property is used:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

107 | P a g e

Figure 114 - Accessing Parent Nodes Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-navigation.php)

It is good to know that the topmost DOM tree nodes can be accessed directly as

document properties. We saw some examples of the topmost DOM tree nodes in earlier

sections such as the <html> element, which can be accessed with

document.documentElement property. Also, the <head> element can be accessed with

document.head property, and the <body> element can be accessed with

document.body property.

There is also an option to get only element nodes with the parentElement, as shown in

the example below:

Figure 115 - Accessing Parent Nodes Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-navigation.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

108 | P a g e

Accessing the Sibling Nodes

To access the previous and next node in the DOM tree, you can use the previousSibling

and nextSibling properties respectively.

Let’s look at an example:

Figure 116 - Accessing Sibling Nodes Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-navigation.php)

To skip any whitespace text nodes, you can use the previousElementSibling and

nextElementSibling as alternatives to get the previous and next sibling elements. If no

such sibling is found, these properties will return null values.

Let’s see an example below:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

109 | P a g e

Figure 117 - Accessing Sibling Nodes Example (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dom-navigation.php)

The textContent property used here signifies the text content of a node and all of its

descendants.

Types of DOM Nodes

The DOM tree is comprised of different types of nodes that includes elements, text,

comments and many more.

Every node has a nodeType property that can help you understand how you can access

and manipulate said node. The following table provides a list with the most important

and used node types that one needs to know:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php
https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

110 | P a g e

Figure 118 - Table of Most Common Types of DOM Nodes (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php)

https://www.tutorialrepublic.com/javascript-tutorial/javascript-dom-navigation.php

111 | P a g e

5.3. JavaScript & BOM

JavaScript Window - The Browser Object Model

The Browser Object Model (BOM) allows JavaScript to "talk to" the browser.

The Browser Object Model (BOM)

There are no official standards for the Browser Object Model (BOM).

Since modern browsers have implemented (almost) the same methods and properties

for JavaScript interactivity, it is often referred to, as methods and properties of the BOM.

The Window Object

The window object is supported by all browsers. It represents the browser's window.

All global JavaScript objects, functions, and variables automatically become members

of the window object.

Global variables are properties of the window object.

Global functions are methods of the window object.

Even the document object (of the HTML DOM) is a property of the window object:

Figure 119 – The Window Object on JS BOM (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window.php)

Is the same as:

Figure 120 – The Window Object on JS BOM – alternative version (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-window.php)

112 | P a g e

Window Size

Two properties can be used to determine the size of the browser window.

Both properties return the sizes in pixels:

• window.innerHeight - the inner height of the browser window (in pixels)

• window.innerWidth - the inner width of the browser window (in pixels)

Figure 121 – The Window size alternatives (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window.php)

Other Window Methods

Some other methods:

• window.open() - open a new window

• window.close() - close the current window

• window.moveTo() - move the current window

• window.resizeTo() - resize the current window

113 | P a g e

JavaScript Window Screen
The window.screen object contains information about the user's screen.

The window.screen object can be written without the window prefix.

Properties:

• screen.width

• screen.height

• screen.availWidth

• screen.availHeight

• screen.colorDepth

• screen.pixelDepth

Window Screen Width

The screen.width property returns the width of the visitor's screen in pixels.

Figure 122 – The screen.width property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window.php)

Window Screen Height

The screen.height property returns the height of the visitor's screen in pixels.

114 | P a g e

Figure 123 – The Window screen.height property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window.php)

Window Screen Available Width

The screen.availWidth property returns the width of the visitor's screen, in pixels, minus

interface features like the Windows Taskbar.

Figure 124 – The Window screen.availWidth property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window.php)

115 | P a g e

Window Screen Available Height

The screen.availHeight property returns the height of the visitor's screen, in pixels,

minus interface features like the Windows Taskbar.

Figure 125 – The Window screen.availWidth property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window.php)

Window Screen Colour Depth

The screen.colorDepth property returns the number of bits used to display one colour.

All modern computers use 24 bit or 32-bit hardware for colour resolution:

24 bits = 16,777,216 different "True Colours"

32 bits = 4,294,967,296 different "Deep Colours"

Older computers used 16 bits: 65,536 different "High Colours" resolution.

Very old computers, and old cell phones used 8 bits: 256 different "VGA colours".

116 | P a g e

Figure 126 – The Window screen.availWidth property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window.php)

Window Screen Pixel Depth

The screen.pixelDepth property returns the pixel depth of the screen.

Figure 127 – The Window screen.pixelDepth property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window.php)

117 | P a g e

JavaScript Window Location

The window.location object can be used to get the current page address (URL) and to

redirect the browser to a new page.

Window Location

The window.location object can be written without the window prefix.

Some examples:

• window.location.href returns the href (URL) of the current page

• window.location.hostname returns the domain name of the web host

• window.location.pathname returns the path and filename of the current page

• window.location.protocol returns the web protocol used (http: or https:)

• window.location.assign() loads a new document

Window Location Href

The window.location.href property returns the URL of the current page.

Figure 128 – The Window window.location.href property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window-location.php)

118 | P a g e

Window Location Hostname

The window.location.hostname property returns the name of the internet host (of the

current page).

Figure 129 – The Window window.location.hostname property (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-window-location.php)

Window Location Pathname

The window.location.pathname property returns the pathname of the current page.

Figure 130 – The Window window.location.pathname property (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-window-location.php)

119 | P a g e

Window Location Protocol

The window.location.protocol property returns the web protocol of the page.

Figure 131 – The Window window.location.protocol property (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-window-location.php)

Window Location Port

The window.location.port property returns the number of the internet host port (of the

current page).

Figure 132 – The Window window.location.port property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window-location.php)

120 | P a g e

Window Location Assign

The window.location.assign() method loads a new document.

Figure 133 – The Window window.location.assign() property (Source:

https://www.tutorialrepublic.com/javascript-tutorial/javascript-window-location.php)

JavaScript Window History

The window.history object contains the browsers history.

Window History

The window.history object can be written without the window prefix.

To protect the privacy of the users, there are limitations to how JavaScript can access

this object.

Some methods:

• history.back() - same as clicking back in the browser

• history.forward() - same as clicking forward in the browser

Window History Back

The history.back() method loads the previous URL in the history list.

This is the same as clicking the Back button in the browser.

121 | P a g e

Figure 134 – The Window history.back() property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window-location.php)

Window History Forward

The history.forward() method loads the next URL in the history list.

This is the same as clicking the Forward button in the browser.

Figure 135 – The Window history.forward() property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window-location.php)

122 | P a g e

JavaScript Window Navigator
The window.navigator object contains information about the visitor's browser.

Window Navigator

The window.navigator object can be written without the window prefix.

Some examples:

• navigator.appName

• navigator.appCodeName

• navigator.platform

Browser Cookies

The cookieEnabled property returns true if cookies are enabled, otherwise false:

Figure 136 – The Window history.forward() property (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-window-location.php)

Browser Application Name

The appName property returns the application name of the browser.

Browser Application Code Name

The appCodeName property returns the application code name of the browser.

The Browser Engine

The product property returns the product name of the browser engine.

123 | P a g e

The Browser Version

The appVersion property returns version information about the browser.

The Browser Agent

The userAgent property returns the user-agent header sent by the browser to the server.

Warning !!!

The information from the navigator object can often be misleading, and should not be

used to detect browser versions because:

• Different browsers can use the same name

• The navigator data can be changed by the browser owner

• Some browsers misidentify themselves to bypass site tests

• Browsers cannot report new operating systems, released later than the browser

The Browser Platform

The platform property returns the browser platform (operating system).

The Browser Language

The language property returns the browser's language.

Is The Browser Online?

The onLine property returns true if the browser is online.

Is Java Enabled?

The javaEnabled() method returns true if Java is enabled.

https://www.w3schools.com/java/default.asp

124 | P a g e

JavaScript Popup Boxes

JavaScript has three kind of popup boxes: Alert box, Confirm box, and Prompt box.

Alert Box

An alert box is often used if you want to make sure information comes through to the

user.

When an alert box pops up, the user will have to click "OK" to proceed.

Syntax:

Figure 137 – Alert box syntax (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-dialog-

boxes.php)

The window.alert() method can be written without the window prefix.

Figure 138 – The window.alert() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dialog-boxes.php)

Confirm Box

A confirm box is often used if you want the user to verify or accept something.

When a confirm box pops up, the user will have to click either "OK" or "Cancel" to

proceed.

If the user clicks "OK", the box returns true. If the user clicks "Cancel", the box returns

false.

125 | P a g e

Syntax:

Figure 139 – The window.alert() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dialog-boxes.php)

The window.confirm() method can be written without the window prefix.

Figure 140 – The window.confirm() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dialog-boxes.php)

Prompt Box

A prompt box is often used if you want the user to input a value before entering a page.

When a prompt box pops up, the user will have to click either "OK" or "Cancel" to

proceed after entering an input value.

If the user clicks "OK" the box returns the input value. If the user clicks "Cancel" the box

returns null.

Syntax:

Figure 141 – The prompt box syntax (Source: https://www.tutorialrepublic.com/javascript-tutorial/javascript-

dialog-boxes.php)

126 | P a g e

The window.prompt() method can be written without the window prefix.

Figure 142 – The window.prompt() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dialog-boxes.php)

Line Breaks

To display line breaks inside a popup box, use a back-slash followed by the character

n.

Figure 143 – Displaying line breaks inside a popup box (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-dialog-boxes.php)

JavaScript Timing Events

Timing Events

The window object allows execution of code at specified time intervals.

These time intervals are called timing events.

The two key methods to use with JavaScript are:

● setTimeout(function,milliseconds)

Executes a function, after waiting a specified number of milliseconds.

127 | P a g e

● setInterval(function,milliseconds)

Same as setTimeout(), but repeats the execution of the function continuously.

The setTimeout() and setInterval() are both methods of the HTML DOM Window object.

The setTimeout() Method

Figure 144 – The setTimeout() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

The window.setTimeout() method can be written without the window prefix.

The first parameter is a function to be executed.

The second parameter indicates the number of milliseconds before execution.

Figure 145 – The window.setTimeout() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

128 | P a g e

How to Stop the Execution?

The clearTimeout() method stops the execution of the function specified in setTimeout().

Figure 146 – The clearTimeOut() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

The window.clearTimeout() method can be written without the window prefix.

The clearTimeout() method uses the variable returned from setTimeout():

Figure 147 – The window.clearTimeout() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

If the function has not already been executed, you can stop the execution by calling the

clearTimeout() method:

Figure 148 – The clearTimeout() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

The setInterval() Method

The setInterval() method repeats a given function at every given time-interval.

129 | P a g e

Figure 149 – The setInterval() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

The window.setInterval() method can be written without the window prefix.

The first parameter is the function to be executed.

The second parameter indicates the length of the time-interval between each execution.

This example executes a function called "myTimer" once every second (like a digital

watch).

Figure 150 – The window.setInterval() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

How to Stop the Execution?

The clearInterval() method stops the executions of the function specified in the

setInterval() method.

Figure 151 – The clearInterval() method (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

130 | P a g e

The window.clearInterval() method can be written without the window prefix.

The clearInterval() method uses the variable returned from setInterval():

Figure 152 – The variable returned from setInterval() (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

Figure 153 – The variable returned from setInterval() (Source: https://www.tutorialrepublic.com/javascript-

tutorial/javascript-timers.php)

131 | P a g e

5.4. JavaScript Advanced

JavaScript Date and Time

Note that the JavaScript Date object is provided by default as a global object in all

JavaScript environments, thus you don't have to import it.

Date objects contain several methods for setting, getting, and manipulating dates and

times.

Creating Date Objects

You can create a new Date object by passing the string representation of a date to the

Date() constructor, or by passing the individual components of a date as parameters to

the Date() constructor (year, month, day, hour, minute, second, millisecond).

The following examples create date objects:

• // Create a date object for today's date: const now = new Date(); //

• Outputs today's date and time in standard format console.log(now); //

• Outputs the day, date, month and year console.log(now.toDateString()); //

• Outputs the hour, minute and second console.log(now.toTimeString());

• Outputs the hour, minute, second and milliseconds

console.log(now.toLocaleString());

• Outputs the year console.log(now.getFullYear());

• Outputs the month (from 0-11) console.log(now.getMonth());

• Outputs the day (from 1-31) console.log(now.getDate());

• Outputs the day of the week (from 0-6) console.log(now.getDay());

• Outputs the hour (from 0-23) console.log(now.getHours());

• Outputs the minute (from 0-59) console.log(now.getMinutes());

• Outputs the second (from 0-59) console.log(now.getSeconds());

132 | P a g e

• Outputs the millisecond (from 0-999) console.log(now.getMilliseconds());

• Outputs the number of milliseconds since the beginning of the day

console.log(now.getTime());

• Outputs the number of seconds since 01.01.1970 console.log(now.getTime() /

1000);

Examples of outputs:

Thu, 22 Aug 2019 11:37:45 GMT

Thu Aug 22 2019 11:37:45 GMT+0000 (Coordinated Universal Time)

11:37:45 GMT+0000 (Coordinated Universal Time)

11:37:45 GMT+0000 (Coordinated Universal Time) 2019 8 22 4 11 37 45

Today is a Thursday, the 22nd of August, 2019.

You can check a practical example here.

The Date() constructor can also take an integer value representing the number of

milliseconds since 01.01.1970, or the string representation of a date.

If you pass an integer value representing the number of milliseconds since 01.01.1970,

the constructor will create a date object representing this date and time.

If you pass a string representation of a date, the constructor will try to parse this date

and create a date object representing this date and time. If the string cannot be parsed,

the constructor will create an invalid date object.

Creating Date Objects With Moment.js

Moment.js is a JavaScript library which makes working with dates and times easy.

To use Moment.js in your project, you have to install it first with a package manager

such as npm or yarn, as follows:

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=passing-parameters-to-the-date-object

133 | P a g e

npm install moment yarn add moment

After the installation, you can import Moment.js into your JavaScript file with the import

statement:

import moment from 'moment';

In the following example we use Moment.js to create a date object for today's date and

time, and then we use the format() method to output the date and time in different

formats:

import moment from 'moment'; // Create a date object for today's date

and time const now = moment(); // Outputs today's date and time in

standard format console.log(now.format()); // Outputs the day, date,

month and year console.log(now.format('dddd, MMMM D, YYYY')); //

Outputs the hour, minute and second console.log(now.format('h:mm:ss

a')); // Outputs the day, date, month, year, hour, minute and // second

console.log(now.format('ddd, hA'));

Outputs:

2019-08-22T15:25:33+04:00 Thursday, August 22, 2019 3:25:33 pm Thu, 3PM

Date Arithmetic

Date objects can be manipulated to change dates and times. Date objects have a set()

method which can be used to set the year, month, day, hour, minute, second, and

millisecond of a date.

When using set() , the object is updated in-place, thus you don't have to create a new

Date object.

The following example uses the set() method to set the hour and minute of a date:

134 | P a g e

const now = new Date(); // Outputs the hour, minute and second

console.log(now.toLocaleString()); // Changes the hour to 12 and the

minute to 45 now.setHours(12); now.setMinutes(45);

console.log(now.toLocaleString());

Outputs:

11:56:09 AM 12:45:09 PM

The setHours() method can also be used to set the hour and minute, and the

setMinutes() method can also be used to set the minute and second.

The Date object also has getters to get the year, month, day, hour, minute, second and

millisecond of a date.

The following example uses the get() method to get the hour and minute of a date:

const now = new Date(); // Outputs the hour, minute and second

console.log(now.toLocaleString()); // Outputs the hour and minute

console.log(now.getHours() + ':' + now.getMinutes());

Outputs:

11:56:09 AM 11:56

When using the set() method, the object is updated in-place, thus you don't have to

create a new Date object.

135 | P a g e

The setDate() method can be used to set the day of a date. The setMonth() method can

be used to set the month of a date. The setFullYear() method can be used to set the

year of a date.

The getDate() method can be used to get the day of a date. The getMonth() method can

be used to get the month of a date. The getFullYear() can be used to get the year of a

date.

The following example uses the set() , setDate() , setMonth() , setFullYear() , get() ,

getDate() , getMonth() and getFullYear() methods to set and get the year, month and

day of a date:

const now = new Date(); now.setDate(1); // Sets the day to the first

day of the month now.setMonth(0); // Sets the month to January

now.setFullYear(2019); // Sets the year to 2019

console.log(now.toLocaleString()); now.setDate(now.getDate() + 10); //

Adds 10

JavaScript Math Operations

You can perform numerical operations using JavaScript. This can be done with the help

of the + (addition), - (subtraction), * (multiplication), / (division) and % (modulus)

operators.

In the example below, we use the addition operator to add two numbers:

var x = 10; var y = 5; var z = x + y;

This will give the value of z as 15.

136 | P a g e

Similarly, we can use the - (subtraction), * (multiplication), / (division) and % (modulus)

operators to perform their respective operations.

The modulus operator returns the remainder of a division operation. For example, if we

divide 10 by 3, the remainder will be 1. Therefore, 10 % 3 will give the output 1.

Apart from these basic arithmetic operations, JavaScript also provides some built-in

mathematical functions. These functions can be used to perform more complex

operations.

Some of the most commonly used mathematical functions are:

• Math.abs(x) : This function returns the absolute value of a number. For example,

Math.abs(-10) will return 10.

• Math.ceil(x) : This function rounds a number up to the nearest integer value. For

example, Math.ceil(4.7) will return 5.

• Math.floor(x) : This function rounds a number down to the nearest integer value.

For example, Math.floor(4.7) will return 4.

• Math.max(x, y, ...) : This function returns the maximum of the arguments passed

to it. For example, Math.max(10, 5, 20) will return 20.

• Math.min(x, y, ...) : This function returns the minimum of the arguments passed

to it. For example, Math.min(10, 5, 20) will return 5.

• Math.pow(x, y) : This function returns the value of x raised to the power of y. For

example, Math.pow(2, 3) will return 8.

• Math.random() : This function returns a random number between 0 and 1.

• Math.sqrt(x) : This function returns the square root of x. For example,

Math.sqrt(16) will return 4.

You can learn more about the Math object and its properties and methods from the

JavaScript Math reference.

137 | P a g e

JavaScript Type Conversions

You can convert a value to a specific data type using built-in methods, such as parseInt()

for converting a value to an integer, or parseFloat() for converting a value to a float.

You can also use the Number() method to convert a value to a number, or the Boolean()

method to convert a value to a boolean.

In the following example we will convert a string to a number using the Number() method:

var x = "100"; var y = Number(x); console.log(y); // 100

In this example we have a string with the value "100". We convert this string to a number

using the Number() method, and then we print the value of the number to the console.

You can also use the unary + operator to convert a value to a number. For example:

var x = "100"; var y = +x; console.log(y); // 100

In this example we have a string with the value "100". We use the unary + operator to

convert the string to a number, and then we print the value of the number to the console.

You can use the parseInt() method to convert a string to an integer, or the parseFloat()

method to convert a string to a float.

For example:

var x = "100.50"; var y = parseInt(x); console.log(y); // 100 var z =

parseFloat(x); console.log(z); // 100.5

138 | P a g e

In this example we have a string with the value "100.50". We use the parseInt() method

to convert the string to an integer, and then we print the value of the integer to the

console.

We also use the parseFloat() method to convert the string to a float, and then we print

the value of the float to the console.

You can use the Boolean() method to convert a value to a boolean.

For example:

var x = "100"; var y = Boolean(x); console.log(y); // true

In this example we have a string with the value "100". We convert the string to a boolean

using the Boolean() method, and then we print the value of the boolean to the console.

You can use the !! operator to convert a value to a boolean. For example:

var x = "100"; var y = !!x; console.log(y); // true

In this example we have a string with the value "100". We use the !! operator to convert

the string to a boolean, and then we print the value of the boolean to the console.

If you want to convert a value to a string, you can use the toString() method.

For example:

var x = 100; var y = x.toString(); console.log(y); // "100"

139 | P a g e

In this example we have a number with the value 100. We convert the number to a string

using the toString() method, and then we print the string to the console.

If you want to convert a value to an array, you can use the Array.from() method.

For example:

var x = "100"; var y = Array.from(x); console.log(y); // ["1", "0",

"0"]

In this example we have a string with the value "100". We convert the string to an array

using the Array.from() method, and then we print the array to the console.

If you want to convert a value to an object, you can use the Object() method.

For example:

var x = "100"; var y = Object(x); console.log(y); // { "0": "1", "1":

"0", "2": "0" }

In this example we have a string with the value "100". We convert the string to an object

using the Object() method, and then we print the object to the console.

JavaScript Event Listeners

DOM Event Listeners

JavaScript Event Listeners allow you to define functions that will run when a specific

event occurs on an element in the DOM.

140 | P a g e

There are a number of different events that can occur on a DOM element, such as when

the element is clicked, hovered over, or even when the element's contents are changed.

To add an event listener to an element, you first need to select the element using one

of the DOM selection methods, such as document.querySelector() or

document.getElementById() .

Once the element is selected, you can use the addEventListener() method to attach an

event listener to the element.

The addEventListener() method takes two arguments: the name of the event to listen

for, and a function to run when the event occurs.

For example, to add a click event listener to a button element, you would use the

following code:

button . addEventListener ("click" , function () { console . log (

"The button was clicked!") ; }) ;

In the code above, when the button element is clicked, the function passed to the

addEventListener() method will be executed.

You can also pass a named function to the addEventListener() method, instead of an

anonymous function:

function handleClick () { console . log ("The button was clicked!")

; } button . addEventListener ("click" , handleClick) ;

141 | P a g e

DOM Event Types

There are a number of different events that can occur on a DOM element.

The most common events are:

• click

• mouseover

• mouseout

• keypress

• change

• submit

You can find a complete list of DOM events on the Mozilla Developer Network.

DOM Event Object

When an event listener function is called, it is passed an event object as an argument.

The event object contains information about the event that occurred, such as the type

of event, the element that the event occurred on, and any event-specific data.

For example, the click event object contains information about the click event, such as

the x and y coordinates of the click.

For example, to log the x and y coordinates of a click event, you would use the following

code:

button . addEventListener ("click" , function () { console . log (

"x: " + this . clientX + ", y: " + this . clientY) ; }) ;

142 | P a g e

In the code above, the this keyword refers to the event object, and the clientX and clientY

properties are used to access the x and y coordinates of the click event.

DOM Event Delegation

DOM Event Delegation is a technique for attaching event listeners to elements that do

not yet exist in the DOM.

This is useful when you have a large number of elements that you want to add event

listeners to, but do not want to add an event listener to each element individually.

For example, if you have a list of 100 items, and you want to add a click event listener

to each item, you could use event delegation to add a single click event listener to the

parent element of the list, and have that listener function handle the click events for all

of the child elements.

To use event delegation, you first need to select the parent element of the elements you

want to add event listeners to.

You can then use the addEventListener() method to attach an event listener to the

parent element.

The addEventListener() method takes two arguments: the name of the event to listen

for, and a function to run when the event occurs.

The function passed to the addEventListener() method will be executed whenever the

event occurs on any of the child elements of the parent element.

143 | P a g e

For example, to add a click event listener to all of the list items in a list, you would use

the following code:

var listItems = document . querySelectorAll ("li") ; listItems . forEach (function (listItem

) { listItem . addEventListener ("click" , function () { console . log ("The list item was

clicked!") ; }) ; }) ;

In the code above, a click event listener is added to each list item individually.

This can be inefficient if there are a large number of list items.

Instead, you could use event delegation to add a single click event listener to the parent

element of the list items:

var list = document . querySelector ("ul") ; list . addEventListener ("click" , function (

event) { if (event . target . tagName === "LI") { console . log ("The list item was clicked!"

) ; } }) ;

In the code above, a click event listener is added to the parent element of the list items.

The function passed to the addEventListener() method checks the tagName property of

the element that was clicked to see if it is an element.

If it is an element, then the function logs a message to the console.

This technique can be used to add event listeners to any type of element, not just list

items.

For example, you could use event delegation to add a click event listener to all of the

buttons in a document:

144 | P a g e

var buttons = document . querySelectorAll ("button") ; buttons . forEach (function (

button) { button . addEventListener ("click" , function () { console . log ("The button

was clicked!") ; }) ; }) ;

Or you could use event delegation to add a click event listener to all of the links in a

document:

var links = document . querySelectorAll ("a") ; links . forEach (function (link) { link .

addEventListener ("click" , function () { console . log ("The link was clicked!") ; }) ; })

;

Event Delegation Summary

In this tutorial you learned about DOM event listeners in JavaScript.

You learned how to use the addEventListener() method to attach event listeners to

elements in the DOM.

You also learned about the different events that can occur on a DOM element, and how

to access the event object from within an event listener function.

Finally, you learned about DOM event delegation, and how to use it to attach event

listeners to elements that do not yet exist in the DOM.

JavaScript Event Propagation

When an event occurs on an element, that event can be recognized by JavaScript and

acted upon.

145 | P a g e

For example, if you click on a button on a web page, you can program JavaScript to

recognize that event and take some action.

The event that occurred is a click event.

When you click on an element, the click event is fired on the element that was clicked.

The event then propagates up the DOM tree.

This means that if there is an event handler on a parent element, that event handler will

be executed.

If there is an event handler on a grandparent element, that event handler will be

executed.

This propagation up the DOM tree continues until the event reaches the root element of

the DOM tree or until the event is stopped.

When the event reaches the root element, the event has bubbled all the way up the

DOM tree.

The event will then propagate back down the DOM tree in the same way, from the root

element to the element that was clicked.

This is called event bubbling. The following diagram shows event bubbling.

You can handle events on any element in the DOM tree.

You can also stop the propagation of an event.

https://plnkr.co/edit/?p=preview&preview

146 | P a g e

For example, you might have an event handler on a parent element, and you do not

want that event handler to be executed when the event occurs on a child element.

In that case, you can stop the event from propagating up the DOM tree.

This is called event propagation.

The event does not reach the root element, and it does not propagate back down the

DOM tree.

You can also stop the propagation of an event at any point in the DOM tree.

For example, you might have an event handler on a grandparent element, and you do

not want that event handler to be executed when the event occurs on a grandchild

element.

In that case, you can stop the event from propagating down the DOM tree. This is called

event capture.

In summary, when an event occurs on an element, that event can be recognized by

JavaScript and acted upon.

The event propagates up the DOM tree, and then back down the DOM tree.

You can handle events on any element in the DOM tree.

You can also stop the propagation of an event.

147 | P a g e

JavaScript Borrowing Methods

We will use an example of an object that contains a property we need to borrow.

var myObject = {

someProperty: “foo”,

};

We can borrow the someProperty property from myObject like this:

var myProperty = myObject.someProperty;

myProperty will now contain the value “foo”.

We can also use the same syntax to borrow methods from objects.

For example, if we have an object with a method we want to borrow:

var myObject = {

someMethod: function() {

// do something

}

};

148 | P a g e

We can borrow the someMethod method like this:

var myMethod = myObject.someMethod;

We can now call myMethod like a normal function.

 myMethod();

JavaScript Hoisting

Hoisting is a behaviour that is unique to JavaScript. It is a concept that is often

misunderstood. Many developers believe that JavaScript hoists variables and function

declarations to the top of the scope.

This is not entirely accurate. What JavaScript actually does is move declarations to the

top of the scope, but not initialization. This can lead to some unexpected behaviour.

Consider the following code:

var foo = 1; function bar() { if (!foo) { var foo = 10; } console.log(foo); } bar();

What do you think the output of this code will be?

If you guessed 10, you would be wrong. The output of this code is 1.

This is because the declaration of foo is hoisted to the top of the scope, but the

initialization is not. When the if statement is executed, foo is undefined and is thus set

to 10.

149 | P a g e

This can be a bit confusing, but it is important to understand how hoisting works in

JavaScript. It can help you to avoid some common mistakes.

JavaScript Closures

JavaScript closure is an inner function that has access to the variables in the outer

(enclosing) function’s scope chain. The closure has three scope chains: it has access

to its own scope (variables defined between its curly brackets), it has access to the outer

function’s variables, and it has access to the global variables.

JavaScript closures are created when the inner function is made within the outer

function. Closures are used extensively in JavaScript libraries such as jQuery.

Here is a simple example of a closure in JavaScript:

function outerFunction(x) {

 var innerFunction = function(y) {

 return x + y;

 }

 return innerFunction;

}

var add5 = outerFunction(5);

var add10 = outerFunction(10);

console.log(add5(2)); // 7

console.log(add10(2)); // 12

150 | P a g e

In the example above, we have a function outerFunction which has a single parameter

x. This function contains a function innerFunction which has a single parameter y. The

innerFunction returns the sum of x and y.

When we call the outerFunction with a value, it returns the innerFunction. When we call

the function returned by the outerFunction with a value, it returns the sum of the value

we passed to the outerFunction and the value we passed to the innerFunction.

In the example above, we have two closures: add5 and add10. When we call add5(2),

it returns 7 because 5 is passed to the outerFunction as the value of x, and 2 is passed

to the innerFunction as the value of y. When we call add10(2), it returns 12 because 10

is passed to the outerFunction as the value of x, and 2 is passed to the innerFunction

as the value of y.

A closure is a function that makes use of variables defined in outer functions that have

previously returned. In the following example, the inner function plus() is making use of

the variable num that was defined in the outer function returnNotification():

function returnNotification() {

 var num = 42;

 function plus() {

 return num + 1;

 }

 return plus;

}

var result = returnNotification();

151 | P a g e

console.log(result()); // 43

In the example above, we have a function returnNotification(). This function has a local

variable num and a function plus(). The plus() function returns the value of num plus 1.

The returnNotification() function returns the plus() function.

We assign the return value of the returnNotification() function to the variable result.

When we call result(), it calls the plus() function and returns the value of num plus 1.

A closure is a function that makes use of variables defined in outer functions that have

previously returned. In the following example, the inner function plus() is making use of

the variable num that was defined in the outer function returnNotification():

function returnNotification() {

 var num = 42;

 function plus() {

 return num + 1;

 }

 return plus;

}

var result = returnNotification();

console.log(result()); // 43

152 | P a g e

In the example above, we have a function returnNotification(). This function has a local

variable num and a function plus(). The plus() function returns the value of num plus 1.

The returnNotification() function returns the plus() function.

We assign the return value of the returnNotification() function to the variable result.

When we call result(), it calls the plus() function and returns the value of num plus 1.

Closures are often used in JavaScript libraries such as jQuery. In the following example,

we are using the jQuery library to create a button. When the button is clicked, an alert

box is displayed with the text "Hello world!":

$(function() {

 var button = $('button');

 button.click(function() {

 alert('Hello world!');

 });

});

In the example above, we have a button element with an id of "button". We are using

the jQuery library to select the button element. We are then using the click() method to

register a function that will be executed when the button is clicked.

The function that is executed when the button is clicked is a closure. It has access to

the variables in the outer function, which in this case is the button element. When the

function is executed, it displays an alert box with the text "Hello world!".

JavaScript Strict Mode

What is Strict Mode in JavaScript?

153 | P a g e

The strict mode is a way to opt in to a restricted variant of JavaScript. Strict mode isn't

just a subset: it intentionally has different semantics from normal code. Browsers aren't

required to run JS code in strict mode and many don't.

Strict mode makes it easier to write "secure" JavaScript. Strict mode changes previously

accepted "bad syntax" into real errors.

SyntaxError: Unexpected eval or arguments in strict mode.

Strict mode also solves some mistakes that silently failed in JavaScript, throwing

exceptions.

• Deleting a variable or a function.

• Using a variable that isn't declared.

• Deleting an object's property.

• Attempting to change a read-only property.

• Adding a property to an object that is not extensible.

• Using an object that has been frozen or sealed.

• Writing to a read-only property.

• Attempting to change the DontDelete attribute on a property.

• Assigning a value to a read-only global variable.

• Incrementing or decrementing a read-only property.

• Attempting to change the DontDelete attribute on a function.

• Assigning a value to a read-only global function.

• Attempting to change the prototype of a function.

The strict mode also prevents, or throws errors, when "unsafe" actions are taken.

• Using a variable without declaring it.

154 | P a g e

• Creating a global variable (without using the var statement).

• Deleting a variable or a function.

• Deleting an object's property.

• Using an object that has been frozen or sealed.

• Attempting to change the DontDelete attribute on a property.

• Assigning a value to a read-only global function.

• Incrementing or decrementing a read-only property.

• Attempting to change the prototype of a function.

In order to execute your code in strict mode, you need to add the "use strict"; directive

to the beginning of your code. The directive is not a string, but rather a literal expression

that appears at the top of a file, script, or function body.

"use strict";

The directive can be placed at either the beginning of a script or at the beginning of a

function.

Example 1: Placing the directive at the beginning of a script.

"use strict"; x = 3.14; // This will cause an error because x is not declared.

Example 2: Placing the directive at the beginning of a function.

function myFunction() { "use strict"; y = 3.14; // This will cause an error because y is not

declared. }

If the strict mode is used inside a function, the strict mode will only be applied to the

function. If the strict mode is used at the top level of a script, the strict mode will be

applied to the whole script.

155 | P a g e

If the strict mode is used at the top level of a script, the strict mode will be applied to the

whole script.

If the strict mode is used inside a function, the strict mode will only be applied to the

function.

In strict mode, any reference to an undeclared variable will cause a reference error.

function myFunction() { "use strict"; x = 3.14; // This will cause an error because x is not

declared. }

In strict mode, any assignment to a non-writable global variable, a non-writable element

of an arguments object, or a non-writable property of this will cause an error.

JavaScript JSON Parsing

What is JSON?

JSON stands for JavaScript Object Notation. It’s a lightweight data-interchange format

that allows you to exchange and store the data in an organized, easy-to-access manner.

The best thing about it is that its syntax resembles plain English so even if you don’t

know anything about programming or coding, there are still chances of understanding

what this code means!

Parsing JSON Data in JavaScript

The following example shows how to parse a string and create an object from it. You

should always prefer parsing data as shown below:

156 | P a g e

var jsonString = '{"name":"John","age":30,"city":"New York"}'; var obj =

JSON.parse(jsonString); console.log('Name: ',obj['name'],' Age:',obj['age'], ' City:' , obj

['city']); // Outputs Name : John, age : 30 and city as New york

Parsing Nested JSON Data in JavaScript

The following example shows how to parse nested data from a string into an object using

the eval() function (which is not recommended). You can also use the same method for

parsing nested objects but you need to be careful while doing so because if there are

any errors then it will throw exceptions which might crash your program!

Encoding Data as JSON in JavaScript

The following example shows how to encode data into a string using the JSON.stringify()

function.

var obj = { name : 'John', age: 30, city:'New York' }; var jsonString = JSON.stringify(obj);

console.log('JSON String is ',jsonString); // Outputs the stringified object as a JSON

JavaScript Error Handling

JavaScript is a very flexible language, which means that there are many ways to write

code. This flexibility can lead to errors in your program if you're not careful about how

you structure it.

One of the most common mistakes developers make is assuming that all code will

execute correctly. This assumption can cause problems because JavaScript is an

interpreted language, meaning that each line of code is executed as it's read by the

interpreter. If there's an error in your code, the interpreter will stop executing at that point

and throw an error message.

157 | P a g e

This tutorial will show you how to deal with errors gracefully so that your program can

continue running even if there are some problems with the input data or other parts of

the code.

The first thing you need to do is identify where the potential errors might occur in your

code. For example, if you're reading data from a file, there's a possibility that the file

doesn't exist or that it's been corrupted. If you're working with user input, there's a

chance that the users will enter invalid data. Once you've identified these potential

sources of error, you can start writing code to deal with them gracefully.

One common way to deal with errors is to use try/catch blocks. These blocks allow you

to "try" some code and "catch" any errors that occur while it's executing. The syntax for

a try/catch block looks like this:

try { // Code to try goes here } catch (error) { // Code to handle errors goes here }

The code inside the try block will be executed first. If no errors occur, the code in the

catch block will never be executed. However, if an error does occur, execution will jump

directly to the catch block and any subsequent code in the try block will be skipped.

Let's look at an example of how this works. Suppose you have a function that reads data

from a file and prints it to the console. However, there's a possibility that the file doesn't

exist:

function readFile(filename) { try { // Code to read and print the contents of "filename"

goes here } catch (error) { console.log("Error reading file: " + error); } }

In this example, the readFile function will try to read and print the contents of a file. If an

error occurs while reading the file, it will be caught by the catch block and printed to the

console.

158 | P a g e

It's important to note that only errors that occur inside the try block will be caught by the

catch block. If there's an error in the catch block itself (for example, if you forget to close

a curly brace), it won't be caught and your program will crash.

Another way to deal with errors is to use JavaScript's built-in Error object. The Error

object can be used to create custom error messages which can then be passed into a

throw statement:

throw new Error("This is a custom error message");

When this code is executed, an error will be thrown and execution of the current function

will stop. Any subsequent code in the function will not be executed.

You can also use the Error object to deal with errors that occur inside asynchronous

code. For example, suppose you have a function that makes an HTTP request and

returns the response data:

function makeRequest(url) { return new Promise((resolve, reject) => { http.get(url,

(response) => { // Code to handle the response goes here }); }); }

This function returns a promise, which means that the data returned by the HTTP

request will be available at some point in the future. If an error occurs while making the

request (for example, if the URL is invalid), it will be caught by JavaScript's built-in error

handling and rejected with an error message.

This rejection will cause the promise to be returned with an error, which can then be

handled by the code that called makeRequest :

159 | P a g e

makeRequest("http://www.example.com") .then((data) => { // Code to handle the data

goes here }) .catch((error) => { console.log("Error making request: " + error); });

In this example, we've registered a callback function for the "then" event which will be

called if the promise is resolved successfully. We've also registered a callback function

for the "catch" event which will be called if an error occurs. This allows us to deal with

errors gracefully and continue executing our code even if there are some problems with

the input data or other parts of the code.

JavaScript Regular Expressions

Regular expressions are a powerful tool used to perform pattern matching and "search-

and-replace" functions on text.

A regular expression is simply a sequence of characters that defines a particular search

pattern. For example, the following regex would match any string containing an

uppercase letter A: /A/.

Regular expressions can be used to perform a wide variety of tasks, such as:

• Extracting information from a given string (e.g., an email address);

• Validating user input (e.g., ensuring that a password is strong enough);

• Searching for and replacing text in a given string (e.g., changing all occurrences

of "a" to "b"),

• Formatting text (e.g., adding commas between words),

• Generating random strings (e.g., creating unique IDs or passwords).

• And much more!

160 | P a g e

In JavaScript, regular expressions are also objects. These objects contain a set of

methods that can be used to perform various operations on strings, such as searching

for patterns or replacing text.

Creating Regular Expressions in JavaScript

There are two ways to create regular expressions in JavaScript: using a regular

expression literal or the RegExp() constructor function.

A regular expression literal is simply a string that contains the pattern you want to match,

enclosed within two forward slashes (/). For example:

const regex = /abc/ ; console .log(regex); // => /abc/

The above code creates a new regular expression object containing the pattern abc and

assigns it to the variable regex . The value of this variable can then be used like any

other JavaScript object. In particular, we can use its methods for performing various

operations on strings.

The RegExp() constructor function can also be used to create regular expressions. This

function takes two arguments: the first is a string containing the pattern you want to

match, and the second is an optional "flags" argument that specifies certain settings for

how the regex should work. For example:

const regex = new RegExp ('abc'); console .log(regex); // => /abc/ const flagsRegex =

new RegExp ('123' , 'i'); console .log(flagsRegex); // => /123/i; i stands for case-

insensitive matching

The above code creates two new regular expression objects. The first contains the

pattern abc and is case-sensitive (the default setting). The second object also has a

161 | P a g e

pattern of 123 but its matching will be case-insensitive, thanks to the i flag that was

passed as the second argument to RegExp() .

Note: In JavaScript, regexes created using literal notation are immutable; they cannot

have their properties or methods changed after they've been defined. On the other hand,

regexes created with RegExp() can be modified at any time because it's just another

constructor function like Date , Array , etc.

JavaScript Form Validation

JavaScript is a client-side scripting language, which means that the script runs on your

visitor's computer. This allows you to do things like check if an email address has been

entered correctly before it gets sent off to the server. It also reduces strain on your server

because form data doesn't have to be submitted until after it has been checked for errors

by JavaScript.

The first thing you need to do is create a form. You can use the following code:

<form action="yourpage.php" method="post"> <p>Name:</p><input type="text"

name="name">
 <p>Email Address:</p><input type="text" name= "email">

</form>

This will create a basic form with two fields, one for the name and one for an email

address. The action attribute tells the browser where to send the data when it is

submitted, in this case yourpage.php . You can change this to whatever page you want

to process the form data on. The method attribute specifies how the data should be sent,

either GET or POST. In most cases you will want to use POST because it is more secure

than GET, but there are some situations where using GET may be preferable (for

example if you wanted people to be able bookmarked search results). For more

162 | P a g e

information about these methods see our HTML Forms Tutorials: Introduction article

which covers them in detail.

The next thing we need do is add a submit button so that visitors can actually send us

their details:

<input type="submit" value="Submit">

You can put this button anywhere inside the form tags. Now if you save your page and

try it out, when you click on the submit button a new window will open with just

yourpage.php in it (assuming that is what you set as the action). This happens because

we haven't told our browser to do anything else yet - at present all submitting the form

does is send us to another page which isn't very useful!

We need JavaScript to check for errors before sending off any data so let's add some

code:

<script type="text/javascript"> function checkForm() { var errorMsg = ""; // Check each

field to make sure it has a value. if (document.form1.name == "") { errorMsg += "- Please

enter your name

"; } else if (document.form1 .email == "" || document .form 1 .email_confirm != document

form 1 email) {errorMsg += "- You must provide an e-mail address and confirm it by

entering the same address again."; } return true; // This line submits the form only when

there are no errors in any of the fields, otherwise we display our message telling them

what they need to do: alert(errormsg); return false ; </script> <body

onload="checkForm();" >

 ... rest of page here...

163 | P a g e

</body>

JavaScript Cookies

Creating a cookie in JavaScript is very simple. You just have to use the document object

and its method createCookie(). The syntax of this function looks like:

 document.cookie = "name=value; expires=date";

The name parameter represents the name of your cookie, while value stands for its

content (string). If you want to set an expiration date on it, then add another attribute

called expires with a valid Date() string as value or simply pass null if you don't need

one.

 document.cookie="username=John Doe;expires"+Date(30); //creates username

cookies that will expire after 30 days from now

 document.cookie="username=John Doe;expires"+Date(30*24); //creates username

cookies that will expire after 30 days from now

Reading a cookie in JavaScript is very simple as well, you just have to use the document

object and its method getCookie(). The syntax of this function looks like:

 var name = getCookie("name");

The only parameter represents the name of your cookie (string). This function returns

null if no such cookie exists or it has already expired. You can also read all existing

cookies using another built-in property called document.cookies which contains an array

with all available ones on your page separated by semicolons ";" . For example:

164 | P a g e

 alert(document.cookies) ;//will display something like :

userName1=value1;userName2=value2 etc... /*this code displays nothing because

there are no any active cookiess*/

Updating a cookie in JavaScript is very simple as well. You just have to create it again

with the same name and value, but this time you also need to set an expiration date

that's greater than its current one (if any). For example:

 document.cookie = "name=newValue; expires=" + Date(Date().getTime()+1); /*this

code will update your cookies*/

 document.cookie = "username=John Doe;expires"+Date(30*24); //creates username

cookies that will expire after 30 days from now /*this code creates new cookies if there

are no active ones or updates existing ones */

JavaScript Ajax Requests

Ajax is a web development technique for creating interactive web applications. The goal

of Ajax is to make web pages feel more responsive by exchanging small amounts of

data with the server behind the scenes, so that the entire page does not have to be

reloaded each time the user makes a change.

In order to use Ajax, you will need to use a JavaScript library such as jQuery or

Prototype. These libraries provide an easy way to send and receive data from a server

without having to refresh the page.

Once you have included the Ajax library in your web page, you can start making requests

to the server. For example, if you wanted to load some data from a file on the server,

you would use the following code:

165 | P a g e

$.ajax({ url: 'data.json', success: function(data) { // do something with the data } });

This code will make an Ajax request to the URL 'data.json'. If the request is successful,

the function in the 'success' callback will be executed with the data from the server as

its argument.

If you want to send data to the server, you can use the '$.ajax()' method's 'data' option:

$.ajax({ url: 'saveData.php', type: 'POST', data: { name: 'John', age: 20 } });

This code will make a POST request to the URL 'saveData.php'. The data that is being

sent to the server is specified in the 'data' option as an object. In this example, we are

sending two pieces of data: 'name' and 'age'.

The following example will show you how to make an Ajax GET request in JavaScript:

$.ajax({ url: 'getData.php', type: 'GET', success: function(data) { // do something with the

data } });

