
The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible

for any use which may be made of the information contained therein. (Project Number: 621417-EPP-1-2020-1-PT-EPPKA3-IPI-SOC-IN)

JavaScript Trainer Materials

Subchapter 1 – JavaScript Basic

WP3: Code4SP Training Materials

Prepared by:

Subchapter 1: JavaScript Basic

What is JavaScript?

• JavaScript (JS) is the most widespread client-side scripting language (client-side scripting is associated to scripts running within a

web browser). JS is intended to add interactivity and dynamic effects to the web pages by manipulating the content returned from a

web server.

• JavaScript is an object-oriented language, and it also has some similarities in syntax to Java programming language, even though it

is not related to Java at all.

JavaScript can be used for various purposes:

• Modify the content of a web page by adding or removing elements;

• Change the style and position of the elements on a web page;

• Monitor events like mouse click, hover, etc. and react to it;

• Make and control transitions and animations;

• Produce alert pop-ups to display info or warning messages to the user;

• Complete operations based on user inputs and display the results;

• Validate user inputs before submitting them to the server;

• And many other interesting purposes to be checked later.

Getting started with JavaScript

From this point, learners will understand how simple it can be to add interactivity to a

web page by using JavaScript.

Characteristically, there are 3 ways of adding JS to a webpage:

• Embedding the JavaScript code between a <script> and a </script> tag;

• Creating an external JavaScript file with the .js extension and then load it

within the page through the src attribute of the <script> tag.

• Placing the JavaScript code directly inside an HTML tag using the special tag

attributes such as onclick, onmouseover, onkeypress, onload, etc.

Getting started with JavaScript

The JavaScript code can be embedded directly within a web page by placing it

between the <script> and </script> tags. The <script> tag indicates the browser that

the contained statements are to be interpreted as executable script and not HTML,

as checked in the following example:

Embedding the JavaScript code between a <script> and a </script> tag

Getting started with JavaScript

• A JavaScript code can be placed as well into a separate file with a .js extension, being then called

in that file in the same document through the src attribute of the <script> tag, as follows:

<script src="js/hello.js"></script>

• This is especially valuable if the programmer wants the same scripts available to multiple

documents. Following this procedure, he/she will avoid repeating the same task over and over

again, and it makes his/her website much simpler to maintain.

Creating an external JavaScript file with the .js extension and then load it within

the page through the src attribute of the <script> tag.

Getting started with JavaScript

Forward to the previous statement, a JavaScript file named "hello.js" will be created

and the following code shall be inserted in it. The result is available in the right picture.

Getting started with JavaScript

Placing the JavaScript code directly inside an HTML tag using the

special tag attributes such

as onclick, onmouseover, onkeypress, onload, etc.

JavaScript code may be introduced inline by inserting it directly inside

the HTML tag by means of the special tag attributes such as onclick,

onmouseover, onkeypress, onload, etc.

Getting started with JavaScript

Nonetheless, it is not advisable to place large amount of JavaScript code inline as it

disorders up HTML with JavaScript and makes JS code hard to maintain. Figure 4

shows an example (in this case, an alert message is shown upon clicking on the button

element):

Getting started with JavaScript

• The <script> element can be positioned in the <head> or <body> section of an HTML

document. However, scripts should be preferably positioned at the end of the body section,

before the closing </body> tag.

• This procedure will enable web pages to load faster, since it avoids obstruction of initial page

rendering. Each <script> tag blocks the page rendering process until it has fully downloaded

and executed the JavaScript code, so placing them in the head section (i.e. <head> element) of

the document without any valid reason will significantly impact the performance of a website.

Getting started with JavaScript

• There are differences between Client-side and Server-side Scripting.

• Client-side scripting languages (e.g., JavaScript or VBScript) are understood and executed by the web

browser, in opposite of server-side scripting languages (e.g., PHP, ASP, Java, Python, Ruby, etc.), which run

on the web server and their output is sent back to the web browser in HTML format.

• Client-side scripting has many advantages comparing to traditional server-side scripting. For instance,

JavaScript can be used to check if the user has entered invalid data in form fields and show notifications for

input errors consequently in real-time before submitting the form to the web-server for final data validation

and further processing in order to avoid needless network bandwidth usages and the misuse of server

system resources.

JavaScript Syntax

• The syntax of JS is the set of rules that comprise a well-structured JavaScript programme. JS

involves statements that are placed within the <script> </script> HTML tags in a web page, or

within the external JavaScript file having .js extension.

JavaScript Syntax

• Learners should state that JavaScript is case-sensitive. So, variables, language keywords,

function names and other identifiers must be typed consistently in terms of letters capitalisation.

For instance, the variable myVar must be typed this way (not “MYVAR”, “myvar”, etc.). This

applies for all cases.

• Commonly to the previous topics, JavaScript also provides the possibility of writing comments

throughout the coding lines. Comments are inserted mainly because they provide extra

information to the source code, but also because it can help programmers on understanding

their codes after some time, teamworking, etc.

JavaScript Syntax

It is possible to add both single-line as well as multi-line comments on JavaScript.

Single-line comments start with a double forward slash (//), followed by the comment

text:

JavaScript Syntax

For a multi-line comment, a slash and an asterisk (/*) are the starting point,

ending with an asterisk and a slash (*/):

JavaScript Variables

• For storing data in JavaScript, programmers create variables.

• They are key for all the programming languages, and are used to store

data, for instance by string of text, numbers, or other element(s).

• Whenever the programmer needs, he/she can set, update and retrieve data

or value stored in the variables. Variables can be understood as symbolic

names for values.

JavaScript Variables

• A variable can be created by using the var keyword, in which the

assignment operator (“=”) is used to allocate value to a variable, as follows:

var varName = value

3 variables have been created

JavaScript Variables

• The latest revision of JavaScript (ECMAScript 2015 or ES6) introduces two new keywords for

declaring variables: let and const.

• The const keyword works the same way as let. However, variables declared using const cannot

be reassigned later in the code, as follows:

In opposite to var keyword, which declare

function-scoped variables, both let and

const keywords declare variables, scoped at

block-level ({}). Block scoping means that a

new scope is created between a pair of curly

brackets.

JavaScript Variables

JavaScript variables have specific rules for being named:

• A variable name must start with a letter, underscore (_), or dollar sign ($).

• A variable name cannot start with a number.

• A variable name can only comprise alpha-numeric characters (A-Z, 0-9) and

underscores.

• A variable name cannot comprehend spaces.

• A variable name cannot be a JavaScript keyword or a JavaScript reserved

word.

JavaScript Generating Output

• There are certain situations in which programmers may need to create outputs from the JS code, e.g., see

the variable’s value, write a message to browser console, etc. In JavaScript, there are some different ways

of creating output including writing output to the browser window or browser console, displaying output in

dialog boxes, writing output into an HTML element, etc.

• It is not difficult to output a message or to write data to the browser’s console (it can be accessed by clicking

F12). For that purpose, the console.log() , a powerful yet simple method, should be applied.

• To write the content to the current document only while that document is being deconstructed, the

document.write() method can be used.

JavaScript Generating Output

• If the document.write() method is used after the page has been loaded, it will overwrite all the existing

content in that document, as follows in this link.

• Alert dialog boxes can also be added to display the message or output data to the user. To create an alert

dialog, the alert() method is used, as follows:

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=problem-with-document-write-method

JavaScript Generating Output

• Outputs can be inserted or written inside an HTML element using the innerHTML

property. Nonetheless, the programmer should select the element before writing the

output, using the getElementById() method.

JavaScript Data Types

Data types essentially stipulate what kind of data can be stored and manipulated within

a program. There are six basic data types in JS, which can be divided into three main

categories:

• Primitive (or primary) – String, Number, and Boolean are examples of primitive

data types, which can hold only one value at a time;

• Composite (or reference) – Object, Array, and Function (which are all types of

objects) are composite data types. These can hold collections of values and more

complex entities; and

• Special data types – Undefined and Null are special data types.

JavaScript Data Types

The String data type

It is used to embody textual data (for instance, sequences of characters). Strings are

created using single or double quotes surrounding one or more characters:

JavaScript Data Types

The Number Data Type

The number data type is useful for exhibiting positive or negative numbers with or

without decimal place, or numbers written using exponential notation, for instance:

1.5e-4 (equivalent to 1.5x10-4)

JavaScript Data Types

The Number Data Type

The Number Data Type also comprises some special values which are: Infinity, -Infinity

and NaN. Infinity represents the mathematical infinity (∞), which is greater than any

number. Infinity is the result of dividing a nonzero number by 0, as could be checked on

the image below:

JavaScript Data Types

The Boolean Data Type

Two values can be hold in this data type: true or false. It is classically used to stock

values like yes (true) or no (false), on (true) or off (false), etc. as follows:

JavaScript Data Types

The Undefined Data Type

The undefined data type can only take one value – the special value undefined. If a

variable has been declared, but has not been assigned a value, the value shall be

declared undefined.

JavaScript Data Types

The Null Data Type

This is one more special data type that can have only one value – the null value. A null

value means that simply there is no value. It is not equivalent to an empty string ("") or

zero, it is purely nothing. A variable can be clearly emptied of its current contents by

assigning it the null value.

JavaScript Data Types

The Object Data Type

The object is a multifaceted data type that permits to store data collections.

An object contains properties, defined as a key-value pair. A property key (name) is always a string, but the

value can be any data type (strings, numbers, booleans, or complex data types like arrays, function and other

objects). The simplest way to create an object in JavaScript is shown below:

JavaScript Data Types

The Function Data Type

The function is a callable object that makes a block of code. Functions are objects, thus it is possible to assign

them to variables, as follows:

JavaScript Data Types

The typeof Operator

The typeof operator can be used to realize what type of data a variable covers. It can be used with or without

parentheses (typeof(x) or typeof x). The typeof operator is mostly beneficial to process the values of different

types in a different way. However, the programmer should be cautious, as it may produce unforeseen results in

some cases:

JavaScript Operators

• Operators are symbols or keywords that inform the JavaScript engine to make a

given action. For instance, the addition (+) symbol is an operator that tells

JavaScript engine to add two variables or values, whereas the equal-to (==),

greater-than (>) or less-than (<) symbols are the operators that tells JavaScript

engine to compare two variables or values, etc.

• Among the different operators used in JavaScript, the first ones to be described are

the JavaScript Arithmetic Operators. These are put in action in order to perform

common arithmetical operations (additions, subtraction, multiplication, and so on).

JavaScript Operators

Operator Description Example Result

+ Addition x + y Sum of x and y

- Subtraction x - y Difference of x and y.

* Multiplication x * y Product of x and y.

/ Division x / y Quotient of x and y

% Modulus x % y Remainder of x

divided by y

JS Arithmetic Operators

JavaScript Operators

JS Arithmetic Operators

JavaScript Operators

JS String Operators

Operator Description Example Result

+ Concatenation str1 + str2 Concatenation

of str1 and str2

+= Concatenation

assignment

str1 += str2 Appends the

str2 to the str1

JavaScript Operators

JS String Operators

JavaScript Operators

JS Incrementing and Decrementing Operators

Operator Name Effect

++x Pre-increment Increments x by one, then

returns x

x++ Post-increment Returns x, then increments x

by one

--x Pre-decrement Decrements x by one, then

returns x

x-- Post-decrement Returns x, then decrements

x by one

JavaScript Operators

JS Incrementing and Decrementing Operators

JavaScript Operators

JS Logical Operators

Operator Name Example Result

&& And x && y True if both x and

y are true

|| Or x || y True if either x or y

is true

! Not !x True if x is not true

JavaScript Operators

JS Logical Operators

JavaScript Operators

JS Comparison Operators

Operator Name Example Result

== Equal x == y True if x is equal to y

=== Identical x === y True if x is equal to y, and they are of the

same type

!= Not equal x != y True if x is not equal to y

!== Not identical x !== y True if x is not equal to y, or they are not of

the same type

< Less than x < y True if x is less than y

> Greater than x > y True if x is greater than y

>= Greater than or equal to x >= y True if x is greater than or equal to y

<= Less than or equal to x <= y True if x is less than or equal to y

https://www.tutorialrepublic.com/javascript-tutorial/javascript-data-types.php

JavaScript Operators

JS Comparison Operators

JavaScript Events

• Before going into deep on this section, it is important to acknowledge what an event is in this context.

An event is something that occurs each time users interact with the web page, such as when a link or

a button is clicked, text is entered into an input box or textarea, a selection is made in a select box, key

is pressed on the keyboard, the mouse pointer is moved, a form is submitted, and so on. Every so

often, the browser is able to trigger the events itself, for example when loading a page.

• When an event happens, programmers can use a JavaScript event handler (or listener) to spot them

and do specific task/s. By convention, the names for event handlers always start with the word "on", so

an event handler for the click event is named onclick, likewise an event handler for the load event is

named onload, event handler for the blur event is named onblur, etc.

JavaScript Events

• There are many ways of assigning an event handler. The simplest way is to add them directly to the

start tag of the HTML elements, by means of the special event-handler attributes. E.g., to assign a

click handler for a button element, the onclick attribute may be used, as follows:

JavaScript Events

• Nonetheless, to keep the JavaScript detached from HTML, programmers can set up the event handler

in an external JavaScript file or within the <script> and </script> tags, as follows:

JavaScript Events

Generally, events can be categorised

into four main groups — mouse events,

keyboard events, form events and

document/window events.

JavaScript Events

• Mouse Events

A mouse event is activated when the user clicks some element, moves the mouse pointer over an

element, and so on. Some important mouse events and their event handlers are as follows:

o The Click Event (onclick): The click event happens when a user clicks on an element on a web

page. Habitually, these are form elements and links. A click event can be handled with an onclick

event handler.

o The Contextmenu Event (oncontextmenu): it occurs when users click the mouse’s right button on

an element, opening a context menu. Oncontextmenu event handler handles a contextmenu event.

o The Mouseover Event (onmouseover): it happens when users move the mouse pointer over an

element. It can be handled with the onmouseover event handler.

o The Mouseout Event (onmouseout): it takes place when users move the mouse pointer outside of

an element. It can be handled by using the onmouseout event handler.

JavaScript Events

• Keyboard Events

A keyboard event takes place when the user presses or releases a key on the keyboard.

Some of the most important keyboard events and their event handlers are as follows:

o The Keydown Event (onkeydown): it happens when users press down a key on the

keyboard. It can be handled by using the onkeydown event handler.

o The Keyup Event (onkeyup): it occurs when users release a key on the keyboard.

Handled with onkeyup event handler.

o The Keypress Event (onkeypress): it happens when a user presses down a key on the

keyboard that has a character value linked to it. E.g., Ctrl, Shift, Alt, Esc, Arrow keys, etc.

will not generate a keypress event, but will generate a keydown and keyup event. The

onkeypress event handler handles the keypress event.

JavaScript Events

• Form Events

A form event is triggered as soon as a form control receives or loses focus or when the user modifies a

form control value (e.g., by typing text in a text input), select an option in a select box, etc.

o The Focus Event (onfocus): it happens when users give focus to an element on a webpage. It can be

handled with onfocus event handler.

o The Blur Event (onblur): it happens when the user takes the focus away from a window or form

element. It can be handled with the onblur event handler.

o The Change Event (onchange): it occurs as soon as a user modificates the value of a form element.

Event handler: onchange.

o The Submit Event (onsubmit): it only happens when the user submits a form on a webpage. Event

handler: onsubmit.

JavaScript Events

• Form Events

A form event is triggered as soon as a form control receives or loses focus or when the user modifies a

form control value (e.g., by typing text in a text input), select an option in a select box, etc.

o The Focus Event (onfocus): it happens when users give focus to an element on a webpage. It can be

handled with onfocus event handler.

o The Blur Event (onblur): it happens when the user takes the focus away from a window or form

element. It can be handled with the onblur event handler.

o The Change Event (onchange): it occurs as soon as a user modificates the value of a form element.

Event handler: onchange.

o The Submit Event (onsubmit): it only happens when the user submits a form on a webpage. Event

handler: onsubmit.

JavaScript Events

• Document/Window Events

Situations in which the page has loaded or resized the browser window can as well

trigger events.

oThe Load Event (onload): it happens when a webpage fully loads in a web browser.

Event handler: onload.

oThe Unload Event (onunload): when the user leaves the present webpage, this event

takes place. Event handler: onunload.

oThe Resize Event (onresize): it happens when the Internet user resizes, minimises or

maximises the browser window. Event handler: onresize.

JavaScript Strings

In JavaScript, strings play a key role on the overall structure of a webpage, since they are

a sequence of letters, numbers, special characters and arithmetic values or even a

combination of all. They can be created by enfolding the string literal (i.e. string

characters) either within single quotes (') or double quotes ("), as follows:

JavaScript Strings

Quotes can be used inside a string, but they should not match the quotes

surrounding the string:

JavaScript Strings

Nonetheless, single quotes can still be put inside a single quoted strings or double quotes

inside double quoted strings, by separating the quotes with a backslash character (\), as

the image below shows. The backslash is termed an escape character, and the

sequences \’ and \” are escape sequences.

JavaScript Strings

Escape sequences are likewise valuable for adding characters that cannot be

inserted by means of a keyboard. Some other most frequently used escape

sequences are:

• \n is replaced by the newline character

• \t is replaced by the tab character

• \r is replaced by the carriage-return character

• \b is replaced by the backspace character

• \\ is replaced by a single backslash (\)

JavaScript Strings

Performing Operations on Strings

• JavaScript makes available several properties and methods to make operations on

string values.

• Precisely, only objects can have properties and methods. However, in JavaScript,

primitive data types can perform like objects when the programmer refers to them with

the property access notation.

• JavaScript offers this possibility through the creation of a provisional wrapper object for

primitive data types. This procedure is done automatically by the JS interpreter in the

background.

JavaScript Strings

Getting the Length of a String

The length property returns the length of the string, which is the number of characters delimited in

the string, including the number of special characters as well, such as \t or \n. Programmers should

be careful on using parentheses after length (e.g. str.length()), as the correct way is str.length (or

else, it will generate an error).

JavaScript Strings

Finding a String Inside Another String

indexOf() method can be used to find a substring or string within another string. This

technique returns the index or position of the first incidence of a specified string within a

string.

JavaScript Strings

Finding a String Inside Another String

Likewise, the lastIndexOf() technique can be used to get the index or position of the last occurrence

of the specified string within a string, as follows on the image below. Both the indexOf(), and the

lastIndexOf() approaches return -1 if the substring is not found. Both methods as well accept an

optional integer parameter which stipulates the position within the string at which to start the search.

JavaScript Strings

Searching for a Pattern Inside a String

The search() method can be used to search a particular piece of text or pattern inside a

string. As the indexOf() approach, search() also returns the index of the first match, and

returns -1 if no matches were found, but unlike indexOf(), search () can as well take a

regular expression as its argument to deliver advanced search aptitudes. It should be

stated that the search() approach does not support global searches, as it disregards the g

flag or modifier of its regular expression argument.

.

JavaScript Strings

Searching for a Pattern Inside a String

JavaScript Strings

Extracting a Substring from a String

For take out a part or substring from a string, the slice() method can be used. This takes two

parameters: start index (index where extraction begins), and an optional end index (index before

which to end extraction), like str.slice(startIndex, endIndex).The example below slices out a portion

of a string from position 4 to position 15:

JavaScript Strings

Extracting a Substring from a String

Negative values can be specified as well. These values are treated as strLength +

startIndex, where strLength is the length of the string (for instance, str.length), for

example, if startIndex is -5 it is treated as strLength - 5. If startIndex is greater than or

equal to the length of the string, slice() method returns an empty string. Correspondingly,

if optional endIndex is not specified or omitted, the slice() method extracts to the end of

the string.

JavaScript Strings

Extracting a Substring from a String

JavaScript Strings

Extracting a Substring from a String

The substring() method to extract a section of the given string based on start and end

indexes, as str.substring(startIndex, endIndex). The substring() method is very

comparable to the slice(), except some differences:

• If either argument is less than 0 or is NaN, it is treated as 0.

• If either argument is greater than str.length, it is treated as if it were str.length.

• If startIndex is greater than endIndex, then substring() will switch those two arguments;

i.e., str.substring(5, 0) == str.substring(0, 5).

JavaScript Strings

Extracting a Fixed Number of Characters from a String

JavaScript also delivers the substr() technique, which is similar to slice() with a

minor difference: the second parameter stipulates the number of characters to

extract instead of ending index, as str.substr(startIndex, length). If length is 0 or

a negative number, an empty string is returned.

JavaScript Strings

Extracting a Fixed Number of Characters from a String

JavaScript Strings

Replacing the Contents of a String

The replace() technique is used to replace part of a string with another string.

This approach takes a regular expression to match or substring with two

parameters and a replacement string, i.e. str.replace(regexp|substr, newSubstr).

This replace() method returns a new string, it does not distress the original

string, which will remain unaffected.

JavaScript Strings

Replacing the Contents of a String

• By default, the replace() technique substitutes only the first match, and it is

case-sensitive. To replace the substring within a string in a case-insensitive

way, a regular expression (regexp) with an i modifier can be used.

• Also, to replace all the incidences of a substring within a string in a case-

insensitive manner, the g modifier along with the i modifier can be used.

JavaScript Strings

Converting a String to Uppercase or Lowercase

• The toUpperCase() method is used to convert a string to

uppercase.

• Likewise, the toLowerCase() method is used to convert a

string to lowercase.

JavaScript Strings

Concatenating Two or More Strings

Two or more strings can be concatenated or combined by

using the + and += assignment operators.

JavaScript Strings

Accessing Individual Characters from a String

• The charAt() method can be used to access individual character from a string, as

str.charAt(index). The index specified should be a number between 0 and str.length -

1. If no index is given, the first character in the string is returned, since the default is 0.

• However, there is a good alternative to this procedure. Since ECMAScript 5, strings

can be treated like read-only arrays, and individual characters can be seen from a

string using square brackets ([]) instead of the charAt() approach.

JavaScript Strings

Splitting a String into an Array

The split() method can be used to fragment a string into an array of strings, using the

syntax str.split(separator, limit). The separator argument stipulates the string at which

each split should happen, while the limit arguments specifies the maximum length of the

array. If separator argument is omitted or not found in the specified string, the entire string

is allocated to the first element of the array.

JavaScript Numbers

There are two types of numbers in JavaScript:

• Regular numbers in JavaScript are stored in 64-bit format IEEE-754, otherwise known

as “double precision floating point numbers”. These are the most used type of numbers.

• BigInt numbers, to represent integers of random length. They are sometimes needed,

because a regular number cannot securely exceed 253 or be less than -253.

JavaScript Numbers

• There are more ways to write a number. For instance, the obvious way to write 1 billion would be

‘1000000000’ or ‘1_000_000_000’, using the underscore as a separator. In this case, the

underscore is the “syntactic sugar”, meaning that it makes the number clearer to read. The JS

engine ignores underscores between digits, so it is the exact same one billion from the first case.

• However, in the real world, everyone most certainly will try to avoid writing long sequences of

zeros. Something like “1bn” for a billion or “2.5 bn” for 2 billion 500 million seems more

reasonable. The same principle applies for most large numbers. It is possible to shorten a

number in JS, by adding the letter “e” to it and specifying the quantity of zeroes.

JavaScript Numbers

• So, e multiplies the number by 1 with the given zeroes count.

1e3 === 1 * 1000; // e3 means *1000

1.23e6 === 1.23 * 1000000; // e6 means *1000000

• The same principle aplies for small numbers. For instance, what should be written for 1 microsecond (one millionth

of a second)?
let mсs = 0.000001;

• Just like the aforementioned case with the big numbers, using "e" can be helpful. To avoid writing the zeroes

explicitly, the following can be written:

let mcs = 1e-6; // six zeroes to the left from 1

• There are 6 zeroes in 0.000001. Then, it is not hard to conclude 1e-6.

JavaScript Numbers

Therefore, a negative number after "e" implies a division by 1 with the given

number of zeroes, as follows:

JavaScript Numbers

Hex, binary, and octal numbers

Hexadecimal numbers are commonly utilized in JavaScript to embody colours, encode

characters, and for many other purposes. So obviously, there is a quicker way to write

them: 0x and then the number, as follows:

JavaScript Numbers

Hex, binary, and octal numbers

• Binary and octal numeral systems are not often utilized,

but as well supported using the 0b and 0o (zero, o)

prefixes.

• There are merely 3 numeral systems with this support.

For further numeral systems, the function parseInt should

be used.

JavaScript Numbers

toString(base) method

• The num.toString(base) method returns a string representation of num in the numeral

system with the provided base, as follows:

JavaScript Numbers

toString(base) method

• There is a specific case to be noted. When two dots are spotted in

123456..toString(36), this is not a typo. When the programmer wants to call a method

directly on a number, it is needed to place two dots (‘..’) after it.

• If a single dot is placed as follows (‘123456.toString(36)’), it would be an error, as

JavaScript syntax entails the decimal part after the first dot. And if the programmer

places one more dot, then JavaScript knows that the decimal part is empty and now

goes the method.

JavaScript Numbers

Rounding

One of the most applied operations when operating with numbers is rounding.

There are some built-in functions for rounding:

• Math.floor

Rounds down: 3.1 turn into 3, and -1.1 converts -2.

• Math.ceil

Rounds up: 3.1 becomes 4, and -1.1 converts -1.

• Math.round

Rounds to the nearest integer: 3.1 becomes 3, 3.6 becomes 4, the middle case: 3.5 rounds up to 4 too.

• Math.trunc (not supported by Internet Explorer)

Eliminates anything after the decimal point without rounding: 3.1 turn out to be 3, -1.1 becomes -1.

JavaScript Numbers

Rounding

Functions from last slide cover all the potential ways to cope with the decimal part of a number. But

what about rounding the number to n-th digit after the decimal?

For example, to round 1.2345 to two digits (1.23).

There are two ways to do so:

1.Multiply-and-divide.

E.g., to round the number to the 2nd digit after the decimal, one can multiply the number by 100 (or a

bigger power of 10), call up the rounding function and then divide it back.

2. The toFixed(n) method rounds the number to n digits after the point and returns a string

representation of the result.

JavaScript Numbers

Imprecise calculations

• On the inside, a number is represented in 64-bit format IEEE-754, so there are precisely

64 bits to store a number: 52 to store the digits; 11 to store the position of the decimal

point (zero for integer numbers), and 1 bit is for the sign.

• If a number is too big, it would pour out the 64-bit storage, possibly giving an infinity.

• Something that ends to happen quite often is the loss of precision.

JavaScript Numbers

Imprecise calculations

• The most reliable method to cope with this situation is toFixed(n):

JavaScript Numbers

Tests: isFinite and isNaN

Previously, those two special numeric values have been

described.

• Infinity (and -Infinity) is a special numeric value that is

greater (less) than anything.

• NaN represents an error.

JavaScript Numbers

Tests: isFinite and isNaN

Both belong to the type number, but are not “normal” numbers, so there are special functions to

check for them:

• isNaN(value) converts its argument to a number and then tests it for being NaN:

• isFinite(value) converts its argument to a number and returns true if it’s a regular number,

not NaN/Infinity/-Infinity;

JavaScript Numbers

parseInt and parseFloat

• Numeric conversion using a plus + or Number() is rigorous. If a value is not

exactly a number, it fails.

• parseInt and parseFloat are meant to extract numeric values out of these

unexpected situations (e.g., when symbols come after the number – 18€).

• They “read” a number from a string until they cannot. In case of an error, the

collected number is returned. The function parseInt returns an integer,

whereas parseFloat will return a floating-point number.

JavaScript Numbers

Other math functions

JavaScript owns a built-in Math object which includes a small library of

mathematical functions and constants:

• Math.random()

Returns a random number from 0 to 1 (not including 1).

• Math.max(a, b, c...) / Math.min(a, b, c...)

Returns the greatest/smallest from the arbitrary number of arguments.

• Math.pow(n, power)

Returns n raised to the given power.

JavaScript If…Else Statements

JavaScript also allows to write code that execute different actions based on the results of a logical or

comparative test conditions at run time. Thus, test conditions can be created as expressions that

evaluates to either true or false and, based on these results, certain actions can be performed.

There are several conditional statements in JavaScript that can be used to make decisions:

• The if statement;

• The if...else statement;

• The if...else if....else statement;

• The switch...case statement.

JavaScript If…Else Statements

The if statement

The if statement is used to execute a block of code only if the specified condition is

evaluated as being true. This is the simplest JS’s conditional statements and can be

written as:

JavaScript If…Else Statements

The if…else statement

The decision-making process of JS can be enhanced by providing an alternative through

adding an else statement to the if statement. The if…else statement allows to execute

one block of code if the specified condition evaluates as true and another block of code if

it evaluates as false.

JavaScript If…Else Statements

The Ternary Operator

The ternary operator gives a shorthand way of writing the if...else statements. It is

characterized by the question mark (‘?’) symbol and it takes three operands: a condition

to check, a result for true, and a result for false. Its basic syntax is as follows:

var result = (condition) ? value1 : value2

If the condition is evaluated as true, the value1 will be returned, if not value2 will be

returned.

JavaScript Switch…Case Statements

• The switch..case statement is an alternate scenario to the if...else if...else statement, which

does nearly the same thing.

• The switch...case statement analyses a variable or expression against a series of values until it

finds a match, and then executes the block of code corresponding to that match. Its syntax is as

follows:

JavaScript Switch…Case Statements

• This example displays the name of the day of the week the reader is in.

• The switch...case statement diverges from the if...else statement in one crucial way. The switch

statement executes line by line and when JavaScript finds a case clause that evaluates to true, it

does not only perform the code corresponding to that case clause, but also executes all the

successive case clauses till the end of the switch block automatically.

• To prevent this, a break statement must be included after each case. The break statement informs

the JS interpreter to break out of the switch...case statement block once it executes the code

linked to the first true case.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=switch-case-statement

JavaScript Arrays

Arrays are complex variables that allow to store more than one value or a group of values under a

single variable name. JavaScript arrays can store any valid value, including strings, numbers,

objects, functions, and at the same time other arrays, therefore enabling to create more complex

data structures such as an array of objects or an array of arrays. In the following example, the name

of colours will be stored in a JavaScript code:

JavaScript Arrays

Creating an Array

• The easiest way to create an array in JavaScript is enclosing a comma-separated list of values in

square brackets ([]), as shown in the following syntax:

var myArray = [element0, element1, ..., elementN];

JavaScript Arrays

Acessing the elements of an Array

• Array elements can be accessed by their index utilizing the square bracket notation. An index is a

number that represents an element's position in an array.

• Array indexes are zero-based. This means that the first item of an array is stored at index 0, not 1,

the second item is stored at index 1, and so on. Array indexes start at 0 and go up to the number

of elements minus 1. So, array of five elements would have indexes from 0 to 4.

JavaScript Arrays

Looping Through Array Elements

for loop can be used to gain access to each element of an array in sequential order, as

follows:

JavaScript Arrays

Adding New Elements to an Array

To add a new element at the end of an array, simply use the push() method, as follows:

JavaScript Arrays

Removing Elements from an Array

To eliminate the last element from an array you can use the pop() method. This method

returns the value that was popped out.

JavaScript Arrays

Adding or Removing Elements at any Position

• The splice() method is a very flexible array method that allows to add or remove

elements from any index, using the syntax arr.splice(startIndex, deleteCount,

elem1, ..., elemN)

• This method takes three parameters: the first is the index at which to start splicing the

array, it is required; the second is the number of elements to remove (0 should be

used in case the programmer does not want to remove any elements), it is optional;

and the third parameter is a set of replacement elements, it is also optional.

JavaScript Arrays

Adding or Removing Elements at any Position

• The splice() method returns an array of the deleted elements, or an empty array if no

elements were deleted, as it can be seen in Figure 81. If the second argument is

absent, all elements from the start to the end of the array are removed.

Unlike slice() and concat() methods, the splice() method modifies the array on which it

is called on.

https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php#slice
https://www.tutorialrepublic.com/javascript-tutorial/javascript-arrays.php#concat

JavaScript Arrays

Creating a String from an Array

• There may be situations in which a programmer simply intends to create a string by

joining the elements of an array. To do so, he/she can use the join() method. This

method takes an optional parameter which is a separator string that is added in

between each element. If you omit the separator, then JavaScript will use comma (,) by

default.

• An array can also be converted to a comma-separated string using the toString(). This

method does not allow the separator parameter as join().

JavaScript Arrays

Merging Two or More Arrays

• The concat() method can be used to combine two or more arrays. This method does

not change the prevailing arrays, instead it returns a new array.

• The concat() method can take any number of array arguments, so an array can be

created from any number of other arrays, as shown in the following example:

JavaScript Arrays

Searching Through an Array

• The indexOf() and lastIndexOf() methods can be used for searching an array for a

specific value. If the value is found, both methods return an index representing the

array element. If the value is not found, -1 is returned.

• The indexOf() method returns the first one found, although the lastIndexOf() returns

the last one found. Both methods also recognise an optional integer parameter from

index which specifies the index within the array at which to start the search.

JavaScript Arrays

Searching Through an Array

JavaScript Arrays

Searching Through an Array

• includes() method can also be used to find out whether an array involves a certain

element or not. This method takes the same parameters as indexOf() and

lastIndexOf() methods, but it returns true or false instead of index number.

JavaScript Arrays

Searching Through an Array

• To search an array based on certain condition the JavaScript find() method can be

used, which has been recently introduced in ES6. This method returns the value of the

first element in the array that fulfils the provided testing function. If not, it returns

undefined.

• The find() method simply searches the first element that meets the provided testing

function. Still, if the programmer intends to find out all the matched elements, the

filter() method can be used. It creates a new array with all the elements that

successfully passes the given test, as can be checked in this example.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=filter-an-array

JavaScript Sorting Arrays

• Sorting is a popular task when working with arrays.

• It can be used, for example, to display the city or country names in alphabetical order.

• The JavaScript Array object has a built-in method sort() for sorting array elements in

alphabetical order.

JavaScript Sorting Arrays

• To reverse the order of the elements of an array, the reverse () method can be used.

It reverses an array in such a way that the first array element becomes the last, and

vice-versa. The sort() and reverse() method changes the initial array and return a

reference to the same array, as it can be checked here.

• For sorting numeric arrays, it is not advisable to use the sort () method, as it can

produce unexpected results. For this purpose, programmers should pass a compare

function, as when a compare function is specified, array elements are sorted according

to the return value of the compare function.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=reverse-the-order-of-an-array

JavaScript Sorting Arrays

• To find the maximum and minimum value in an Array, the apply() method in

combination with the Math.max() and Math.min() can be used, as follows in this

example. The apply() method offers an accessible way to pass array values as

arguments to a function that accepts multiple arguments in an array-like manner, but

not an array. Then, the resulting statement Math.max.apply(null, numbers) in the

example above is equivalent to the Math.max(3, -7, 10, 8, 15, 2).

• Finally, to sort an array of objects the sort() method can be used. In this example, it

is shown how to sort an array of objects by property values.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=find-the-maximum-and-minimum-value-in-an-array
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=find-the-maximum-and-minimum-value-in-an-array
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=sort-an-array-of-objects

JavaScript Loops

Loops are applied to perform the same block of code many times if a certain condition is

encountered. The key idea behind a loop is to mechanize the repetitive tasks within a

program to save the time and effort. JavaScript now supports five different types of loops:

while — loops through a block of code if the condition specified evaluates to true.

do…while — loops through a block of code one time; then the condition is evaluated. If

the condition is true, the statement is repeated if the specified condition is true.

for — loops through a block of code until the counter reaches a specified number.

for…in — loops through the properties of an object.

for…of — loops over iterable objects such as arrays, strings, etc.

JavaScript Loops

The while loop

• This is the easiest looping statement provided by JS. It loops through a block of code if the

specified condition evaluates to true. Once the condition fails, the loop is stopped. The generic

syntax of the while loop is:

while(condition) {

// Code to be executed

}

• In this example, a loop that keeps on running as long as the variable i ≤ 5. As it can be checked, i

will increase by 1 each time the loop runs. Programmers must ensure that the condition specified

in the loop can eventually go false. If not, the loop will never stop iterating (infinite loop).

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=while-loop

JavaScript Loops

The do…while loop

• The do-while loop is a variant of the while loop, which assesses the condition at the

end of each loop iteration. With a do…while loop, the block of code is executed once,

and then the condition is evaluated, if the condition is true, the statement is repeated if

the specified condition evaluated to is true. Its common syntax is:

do {

// Code to be executed

}

while(condition);

JavaScript Loops

The do…while loop

• The JavaScript code in this example defines a loop that

starts with i=1. It will then produce the output and

increase the value of variable i by 1. After that the

condition is evaluated, and the loop will continue to run if

i ≤ 5.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=do-while-loop

JavaScript Loops

The for loop

• It repeats a block of code if a certain condition is met. It is normally

used to implement a block of code for certain number of times. Its

syntax is:

for(initialization; condition; increment) {

// Code to be executed

}

JavaScript Loops

The for loop

• The loop counter i.e., variable in the for-in loop is a string, not a

number. It comprises the name of present property or the index of the

current array element.

• This example demonstrates how to loop through all properties of a JS

object.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=for-in-loop

JavaScript Loops

The for...of Loop

• ES6 presents a new for-of loop which allows to iterate over arrays or

other iterable objects (e.g., strings) very simply. Additionally, the code

inside the loop is executed for each element of the iterable object.

• This example shows how to loop trough arrays and strings using this

loop.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=es6-for-of-loop

JavaScript Functions

A function is a set of statements that accomplish

specific tasks and can be kept and maintained

independently. Functions give a way to create

reusable code packages which are more manageable

and easier to debug.

JavaScript Functions

Some advantages of using functions are as follows:

• Functions decreases the repetition of code within a program — Function allows to extract frequently used

block of code into a single component. This way it is possible to perform the same task by calling this function

wherever needed within a script without having to copy and paste the same block of code over and over.

• Functions makes the code much easier to maintain — Since a function created once can be applied many

times, any changes made inside a function are automatically implemented at all the places without affecting the

respective files.

• Functions makes it easier to get rid of the errors — When the program is split into functions, if any error

arise, the programmer knows precisely what function is causing the error and where to spot it. Consequently,

fixing errors becomes much simpler.

JavaScript Functions

The declaration of a function starts with the function keyword, followed by the

name of the function to be created, then followed by parentheses, and lastly by

the function's code between curly brackets {}. To declare a function, the

following syntax applies:

function functionName() {

// Code to be executed

}

Defining and Calling a Function

JavaScript Functions

• This simple example displays a “Hello” message.

• Once a function is defined, it can be called from anywhere in the

document, by typing its name followed by a set of parentheses,

like sayHello() in the example given previously.

Defining and Calling a Function

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=define-and-call-a-function

JavaScript Functions

• The displaySum() function in this example gets two numbers as

arguments, simply add them as one and then display the result in the

browser. There is no limit for defining parameters.

• Nevertheless, for each parameter specified, a corresponding argument

requires to be passed to the function when it is called, if not its value

becomes undefined.

Adding Parameters to Functions

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=add-parameters-to-a-function
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=pass-arguments-to-a-function

JavaScript Functions

Default Values for Function Parameters

With ES6, it is possible to specify default values to the function

parameters. This implies that if no arguments are provided to

function when it is called, these default parameters values will be

used. This example is quite explanative regarding how valuable

this feature is, since to achieve the same result, the prior

procedure was this one.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=es6-function-with-default-parameter-values
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=setting-default-values-for-function-parameters-in-older-versions

JavaScript Functions

Returning Values from a Function

• A function can return a value back to the script that called the function as a result, by

utilizing the return statement. The value may be of any type (i.e., arrays and objects).

The return statement typically placed as the last line of the function before the closing

curly bracket and ends it with a semicolon, as displayed here.

• A function can does not return multiple values. Still, similar results can be obtained by

returning an array of values, as exhibited here.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=return-a-value-from-a-function
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=return-multiple-values-from-a-function

JavaScript Functions

Working with Function Expressions

• The syntax used before to create functions is called function declaration. There is another syntax for building

a function – function expression. Once stored in a variable, the variable can be utilized as a function.

• The syntax of the function declaration and function expression seems very similar, but they vary in the way they

are evaluated. As observed in the previous example, the function expression gave an exception when it was

invoked before it is defined, but the function declaration executed effectively.

• JS analyses declaration function before the program executes. Hence, it does not make a difference if the

program invokes the function before it is defined, as JavaScript has elevated the function to the top of the

current scope in the background. The function expression is not assessed until it is assigned to a variable;

consequently, it is still undefined when invoked.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=function-expression
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=assign-a-function-to-a-variable
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=function-declaration-vs-function-expression

JavaScript Functions

Understanding the Variable Scope

• Variables can be declared anywhere in JS. However, the location of the declaration will establish

the extent of a variable's availability within the JavaScript program – this process is also called

variable scope.

• By default, variables declared within a function have local scope, which means they cannot be

viewed or controlled from outside of that function, as shown here.

• Though, any variables declared in a program outside of a function has global scope, wherever that

script is located concerning the function, as it can be checked here.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=global-variable
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=global-variable

JavaScript Objects

• JavaScript is an object-based language and there nearly everything is an object or acts

like one. Thus, to work with JS successfully and efficiently, programmers need to

understand how objects work, as well as how to create objects and use them.

• A JavaScript object is simply a collection of named values. They are typically referred

to as properties of the object. Being an array a collection of values, in which each value

has an index (a numeric key) starting from zero and incrementing by one for each

value. An object is like an array, but the difference is that the programmer defines the

keys, (name, age, gender, etc.).

JavaScript Objects

Creating an object

• Programmers can create objects with curly brackets, including a voluntary list of

properties as well. A property can be “key:value” pair, in which the key (or property

name) is always a string, and value (or property value) can be any data type (strings,

numbers, Booleans, arrays, functions, etc.).

• Moreover, properties with functions as their values are frequently called methods to

distinguish them from other features. A JS object may be as this. This example creates

an object called person, which has 3 properties (name, age and gender) and one

method displayName().

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=creating-objects

JavaScript Objects

Creating an object

• This method shows the value of this.name, which agrees to person.name. This is the

easiest and ideal way to create a new object in JF, which is known as object literals

syntax.

• The property names generally do not need to be quoted except if they are reserved

words, or if they contain spaces or special characters (anything other than letters,

numbers, and the _ and $ characters), or if they start with a number, as shown here.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=quoting-property-names-of-an-object

JavaScript Objects

Accessing Object’s Properties

• In order to access or get the value of a property, the dot (.) can be applied, as well as

the square bracket ([]) notation, as this example shows. The dot notation is simpler to

read and write, but it cannot always be used. If the name of the property is not valid

(for example, if it contains special characters or spaces), the dot notation cannot be

used, but the bracket notation instead.

• It presents much more flexibility than dot notation and additionally allows to identify

property names as variables as a replacement for string literals.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=get-properties-values-of-an-object
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=access-properties-of-an-object-using-bracket-notation

JavaScript Objects

Looping Through Object’s Properties

• Programmers can iterate through the key-value pairs of an object using the

for...in loop. It is specifically enhanced for iterating over object's properties, as

seen here.

Setting Object's Properties

• Likewise, new properties can be set, or the existing one can be

updated by using the dot (.) or bracket ([]) notation, as demonstrated

here.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=loop-through-an-object
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=set-the-properties-of-an-object

JavaScript Objects

Deleting Object's Properties

• The delete operator can be applied to entirely delete properties from an object.

Removing is the only way to really get rid of a property. Adjusting the property to

undefined or null simply changes the value of the property, it does not remove property

from the object.

• So, it has no effect on variables or declared functions. Nevertheless, programmers

should avoid delete operator for the purpose of deleting an array element, as it does

not modify the array's length, it just drops a hole in the array.

JavaScript Objects

Calling Object's Methods

An object's method can be accessed the same way

as one would access properties—using the dot

notation or applying the square bracket notation, as

can be checked here.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=call-the-methods-of-an-object

JavaScript Objects

Manipulating by Value vs. Reference

JS objects are reference types, which means that when the

programmer makes copies of them, they are simply copying the

references to that object, while primitive values like strings and

numbers are assigned or copied as a whole value. This example is

quite demonstrative of this idea.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=copy-by-value

JavaScript Objects

Manipulating by Value vs. Reference

• As it could be observed, a copy of a variable message has been done and it

changed the value of that same copy. Both variables remain distinct and separate.

However, if the same principle is applied to an object, a different result will be

gathered.

• So, any changes done to the variable user also interfere with the person variable,

as both variables refer to the same object. Therefore, merely copying the object

does not really clone it but copies the reference to that object.

https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=copy-by-reference
https://www.tutorialrepublic.com/codelab.php?topic=javascript&file=copy-by-reference

LET’S PRACTICE!

Open the following link in order to practice some of the

concepts acquired so far:

https://www.w3resource.com/javascript-exercises/javascript-

basic-exercises.php

https://www.w3resource.com/javascript-exercises/javascript-basic-exercises.php
https://www.w3resource.com/javascript-exercises/javascript-basic-exercises.php

THANK YOU!

	Slide 1
	Slide 2: Subchapter 1: JavaScript Basic
	Slide 3: What is JavaScript?
	Slide 4: Getting started with JavaScript
	Slide 5: Getting started with JavaScript
	Slide 6: Getting started with JavaScript
	Slide 7: Getting started with JavaScript
	Slide 8: Getting started with JavaScript
	Slide 9: Getting started with JavaScript
	Slide 10: Getting started with JavaScript
	Slide 11: Getting started with JavaScript
	Slide 12: JavaScript Syntax
	Slide 13: JavaScript Syntax
	Slide 14: JavaScript Syntax
	Slide 15: JavaScript Syntax
	Slide 16: JavaScript Variables
	Slide 17: JavaScript Variables
	Slide 18: JavaScript Variables
	Slide 19: JavaScript Variables
	Slide 20: JavaScript Generating Output
	Slide 21: JavaScript Generating Output
	Slide 22: JavaScript Generating Output
	Slide 23: JavaScript Data Types
	Slide 24: JavaScript Data Types
	Slide 25: JavaScript Data Types
	Slide 26: JavaScript Data Types
	Slide 27: JavaScript Data Types
	Slide 28: JavaScript Data Types
	Slide 29: JavaScript Data Types
	Slide 30: JavaScript Data Types
	Slide 31: JavaScript Data Types
	Slide 32: JavaScript Data Types
	Slide 33: JavaScript Operators
	Slide 34: JavaScript Operators
	Slide 35: JavaScript Operators
	Slide 36: JavaScript Operators
	Slide 37: JavaScript Operators
	Slide 38: JavaScript Operators
	Slide 39: JavaScript Operators
	Slide 40: JavaScript Operators
	Slide 41: JavaScript Operators
	Slide 42: JavaScript Operators
	Slide 43: JavaScript Operators
	Slide 44: JavaScript Events
	Slide 45: JavaScript Events
	Slide 46: JavaScript Events
	Slide 47: JavaScript Events
	Slide 48: JavaScript Events
	Slide 49: JavaScript Events
	Slide 50: JavaScript Events
	Slide 51: JavaScript Events
	Slide 52: JavaScript Events
	Slide 53: JavaScript Strings
	Slide 54: JavaScript Strings
	Slide 55: JavaScript Strings
	Slide 56: JavaScript Strings
	Slide 57: JavaScript Strings
	Slide 58: JavaScript Strings
	Slide 59: JavaScript Strings
	Slide 60: JavaScript Strings
	Slide 61: JavaScript Strings
	Slide 62: JavaScript Strings
	Slide 63: JavaScript Strings
	Slide 64: JavaScript Strings
	Slide 65: JavaScript Strings
	Slide 66: JavaScript Strings
	Slide 67: JavaScript Strings
	Slide 68: JavaScript Strings
	Slide 69: JavaScript Strings
	Slide 70: JavaScript Strings
	Slide 71: JavaScript Strings
	Slide 72: JavaScript Strings
	Slide 73: JavaScript Strings
	Slide 74: JavaScript Strings
	Slide 75: JavaScript Numbers
	Slide 76: JavaScript Numbers
	Slide 77: JavaScript Numbers
	Slide 78: JavaScript Numbers
	Slide 79: JavaScript Numbers
	Slide 80: JavaScript Numbers
	Slide 81: JavaScript Numbers
	Slide 82: JavaScript Numbers
	Slide 83: JavaScript Numbers
	Slide 84: JavaScript Numbers
	Slide 85: JavaScript Numbers
	Slide 86: JavaScript Numbers
	Slide 87: JavaScript Numbers
	Slide 88: JavaScript Numbers
	Slide 89: JavaScript Numbers
	Slide 90: JavaScript Numbers
	Slide 91: JavaScript If…Else Statements
	Slide 92: JavaScript If…Else Statements
	Slide 93: JavaScript If…Else Statements
	Slide 94: JavaScript If…Else Statements
	Slide 95: JavaScript Switch…Case Statements
	Slide 96: JavaScript Switch…Case Statements
	Slide 97: JavaScript Arrays
	Slide 98: JavaScript Arrays
	Slide 99: JavaScript Arrays
	Slide 100: JavaScript Arrays
	Slide 101: JavaScript Arrays
	Slide 102: JavaScript Arrays
	Slide 103: JavaScript Arrays
	Slide 104: JavaScript Arrays
	Slide 105: JavaScript Arrays
	Slide 106: JavaScript Arrays
	Slide 107: JavaScript Arrays
	Slide 108: JavaScript Arrays
	Slide 109: JavaScript Arrays
	Slide 110: JavaScript Arrays
	Slide 111: JavaScript Sorting Arrays
	Slide 112: JavaScript Sorting Arrays
	Slide 113: JavaScript Sorting Arrays
	Slide 114: JavaScript Loops
	Slide 115: JavaScript Loops
	Slide 116: JavaScript Loops
	Slide 117: JavaScript Loops
	Slide 118: JavaScript Loops
	Slide 119: JavaScript Loops
	Slide 120: JavaScript Loops
	Slide 121: JavaScript Functions
	Slide 122: JavaScript Functions
	Slide 123: JavaScript Functions
	Slide 124: JavaScript Functions
	Slide 125: JavaScript Functions
	Slide 126: JavaScript Functions
	Slide 127: JavaScript Functions
	Slide 128: JavaScript Functions
	Slide 129: JavaScript Functions
	Slide 130: JavaScript Objects
	Slide 131: JavaScript Objects
	Slide 132: JavaScript Objects
	Slide 133: JavaScript Objects
	Slide 134: JavaScript Objects
	Slide 135: JavaScript Objects
	Slide 136: JavaScript Objects
	Slide 137: JavaScript Objects
	Slide 138: JavaScript Objects
	Slide 139: LET’S PRACTICE!
	Slide 140

